首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的BP神经网络模型在岩心扫描仪测定海洋沉积物多种组分中的应用研究
引用本文:李强,刘坚,李小穗,涂公平,杨天邦. 基于遗传算法的BP神经网络模型在岩心扫描仪测定海洋沉积物多种组分中的应用研究[J]. 岩矿测试, 2016, 35(5): 488-495
作者姓名:李强  刘坚  李小穗  涂公平  杨天邦
作者单位:国土资源部海底矿产资源重点实验室, 广东 广州 510075;广州海洋地质调查局, 广东 广州 510760,国土资源部海底矿产资源重点实验室, 广东 广州 510075;广州海洋地质调查局, 广东 广州 510760,国土资源部海底矿产资源重点实验室, 广东 广州 510075;广州海洋地质调查局, 广东 广州 510760,国土资源部海底矿产资源重点实验室, 广东 广州 510075;广州海洋地质调查局, 广东 广州 510760,国土资源部海底矿产资源重点实验室, 广东 广州 510075;广州海洋地质调查局, 广东 广州 510760
基金项目:国土资源部海底矿产资源重点实验室资助项目(KLMMR-2014-A-01)
摘    要:海洋沉积物样品成分复杂,由于基体效应的影响,利用岩心扫描仪开展X射线荧光光谱分析只能得到目标元素的强度信息,不利于该方法在成矿机制和古环境等研究领域更好地发挥作用。本文采用岩心扫描仪测定海洋沉积物中的铝硅钾钙钛锰铁钒铬铜锌铷锶钇和铅15种元素,尝试引入BP神经网络模型利用其非线性拟合能力校正基体效应。实验表明,以水系沉积物、海洋沉积物和岩石国家标准物质以及定值海洋沉积物样品为训练样本,采用遗传算法优化BP神经网络的初始权值和偏置,可以有效校正除硅之外的14种元素基体效应的影响,实现了岩心扫描仪XRF测量结果由强度到浓度的转化。本方法的精密度为0.6%~6.8%(RSD,n=11),国家标准物质和海洋沉积物实际样品中15种组分的预测值与参考值的相对偏差在0.5%~17.5%之间,适合于海洋沉积物中多种主次量组分的快速分析,拓展了岩心扫描仪的功能。

关 键 词:遗传算法  神经网络  岩心扫描仪  海洋沉积物  基体效应
收稿时间:2015-10-27
修稿时间:2016-09-27

Determination of Multi-components in Marine Sediments by Core Scanner Based on BP Neural Network of Genetic Algorithm
LI Qiang,LIU Jian,LI Xiao-sui,TU Gong-ping and YANG Tian-bang. Determination of Multi-components in Marine Sediments by Core Scanner Based on BP Neural Network of Genetic Algorithm[J]. Rock and Mineral Analysis, 2016, 35(5): 488-495
Authors:LI Qiang  LIU Jian  LI Xiao-sui  TU Gong-ping  YANG Tian-bang
Affiliation:Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;Guangzhou Marine Geological Survey, Guangzhou 510760, China,Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;Guangzhou Marine Geological Survey, Guangzhou 510760, China,Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;Guangzhou Marine Geological Survey, Guangzhou 510760, China,Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;Guangzhou Marine Geological Survey, Guangzhou 510760, China and Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;Guangzhou Marine Geological Survey, Guangzhou 510760, China
Abstract:Marine sediments have complex components. Due to the influence of the matrix effect, intensities of elements can only be acquired when using a Core Scanner to carry out X-ray Fluorescence Spectrum analysis, which restricts its application in the fields of paleoecology and mineralization. A method has been introduced for the fast determination of Al2O3, K2O, CaO, TiO2, MnO, Fe2O3, V, Cr, Cu, Zn, Rb, Sr, Y and Pb in marine sediments by Core Scanner, the effects of back-propagation neural network on correcting the nonlinear matrix effects have been investigated and are presented in this paper. Experimental results show that using national certified reference materials of stream sediments, marine sediments and rocks as training samples, a genetic algorithm is used to optimize the initial weight and bias of BP neural network. The matrix effect of 14 elements except Si was corrected by the GA-BP neural network method, which converts the Core Scanner X-ray Fluorescence Spectrum output results from intensities to concentrations. The relative standard deviations of this method are 0.6%-6.8% (n=11). The relative deviations between the predicted values and the reference values of the 15 components of the national standard materials and marine sediment samples range from 0.5% to 17.5%. This indicates that the proposed method is suitable for fast analysis of multi-components in marine sediments, extending the functions of the Core Scanner.
Keywords:genetic algorithm  neural network  core scanner  marine sediments  matrix effect
本文献已被 CNKI 等数据库收录!
点击此处可从《岩矿测试》浏览原始摘要信息
点击此处可从《岩矿测试》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号