首页 | 本学科首页   官方微博 | 高级检索  
     


Implications of Non-cylindrical Flux Ropes for Magnetic Cloud Reconstruction Techniques and the Interpretation of Double Flux Rope Events
Authors:M.?J.?Owens  author-information"  >  author-information__contact u-icon-before"  >  mailto:m.j.owens@reading.ac.uk"   title="  m.j.owens@reading.ac.uk"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,P.?Démoulin,N.?P.?Savani,B.?Lavraud,A.?Ruffenach
Affiliation:1.Space Environment Physics Group, Department of Meteorology,University of Reading,Reading,UK;2.Space and Atmospheric Physics,Imperial College London,London,UK;3.Observatoire de Paris, Section de Meudon,Meudon Cedex,France;4.Solar-Terrestrial Environment Laboratory,Nagoya University,Nagoya,Japan;5.Institut de Recherche en Astrophysique et Planétologie (IRAP),Université de Toulouse (UPS),Toulouse,France;6.UMR 5277,Centre National de la Recherche Scientifique,Toulouse,France
Abstract:Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号