AIRBORNE RESISTIVITY MAPPING USING A MULTIFREQUENCY ELECTROMAGNETIC SYSTEM* |
| |
Authors: | AJIT K. SINHA |
| |
Abstract: | Airborne electromagnetic methods are most commonly used in mineral exploration. However, new developments, such as multifrequency capability and digital on-board field recording, as well as improvements in instrumentation resulting in high signal-to-noise ratios in recorded data, have made their application in geological mapping possible. A three-frequency airborne EM survey carried out over an area northwest of Timmins, Ontario, was interpreted in terms of thickness and resistivity of the layers of a two-layer earth section. Since both in-phase and quadrature components are measured, this provides six independent parameters at each point in space. Based on prior geological information and a preliminary interpretation of the field records, two two-layer models of the subsurface seemed to be appropriate for most of the survey area. An automatic computerized interpretation procedure was devised to interpret the field data at each point in terms of thickness and resistivity parameters of those two models. When the geology is more complex, the data do not fit the models and no interpretations are made. Two maps illustrating the variation of the resistivity and the thicknesses of the layers were constructed from the interpreted data. These maps agree with the known geological information about the distribution of glacial clay in the area. Areas where the layered models do not fit are known to be areas where the geology is complex with a large number of dykes and other lateral inhomogeneities. The study shows that multifrequency airborne EM surveys can be very useful in geological mapping over inaccessible terrain and can significantly help the mapping geologist where outcrops are scarce. |
| |
Keywords: | |
|
|