首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习模型的青藏高原日降水数据的订正研究
引用本文:陈浩,宁忱,南卓铜,王玉丹,吴小波,赵林. 基于机器学习模型的青藏高原日降水数据的订正研究[J]. 冰川冻土, 2017, 39(3): 583-592. DOI: 10.7522/j.issn.1000-0240.2017.0065
作者姓名:陈浩  宁忱  南卓铜  王玉丹  吴小波  赵林
作者单位:1. 宝鸡文理学院 地理与环境学院, 陕西 宝鸡 721013;2. 南京师范大学 地理科学学院, 江苏 南京 210023;3. 中国科学院 西北生态环境资源研究院, 甘肃 兰州 730000
基金项目:国家自然科学基金项目(41471059);陕西省科技统筹创新计划项目(2016KTCL03-17);陕西省教育厅重点实验室项目(16JS006)资助
摘    要:选择了5种机器学习模型,即k最近邻方法(KNN)、多元自回归样条方法(MARS)、支持向量机(SVM)、多项对数线性模型(MLM)和人工神经网络(ANN),利用海拔、相对湿度、坡向、植被、风速、气温和坡度等因子订正ITPCAS和CMORPH两种常用的青藏高原日降水数据集。五折交叉验证表明,KNN的订正精度最高。在三个验证站点(唐古拉、西大滩和五道梁)的误差分析,以及对青藏高原年降水量的空间分析均表明,KNN对CMORPH的订正效果显著,对ITPCAS在局部区域有一定订正效果,ITPCAS及其订正值的降水空间分布准确度高于CMORPH的订正值。主成分分析法表明降水订正是气象和环境因子综合作用的结果。

关 键 词:机器学习模型  降水数据  订正  青藏高原  
收稿时间:2016-12-20
修稿时间:2017-02-10

Correction of the daily precipitation data over the Tibetan Plateau with machine learning models
CHEN Hao,NING Chen,NAN Zhuotong,WANG Yudan,WU Xiaobo,ZHAO Lin. Correction of the daily precipitation data over the Tibetan Plateau with machine learning models[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 583-592. DOI: 10.7522/j.issn.1000-0240.2017.0065
Authors:CHEN Hao  NING Chen  NAN Zhuotong  WANG Yudan  WU Xiaobo  ZHAO Lin
Affiliation:1. School of Geography and Environment, Baoji University of Science and Art, Baoji 721013, Shaanxi, China;2. School of Geography Science, Nanjing Normal University, Nanjing 210023, China;3. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract:In this paper, five machine learning models, namely k-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), support vector machine (SVM), multinomial log-linear models (MLM) and artificial neural networks (ANN), are selected to correct two commonly used precipitation datasets, ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences) and CMORPH (climate prediction center morphing technique), over the Tibetan Plateau by establishing the relationship between daily precipitation and environmental data (elevation, slope, aspect, vegetation), as well as meteorological factors (air temperature, humidity, wind speed). The 5-fold cross validation shows that the KNN has the highest accuracy. The error analysis over the Tanggula, Xidatan and Wudaoliang Stations and the spatial analysis on annual precipitation over the plateau show that the KNN model can significantly correct the CMORPH over the plateau and the correction on the ITPCAS is significant locally. The KNN-corrected CMORPH has lower accuracy than the two ITPCAS precipitation. Principal component analysis indicates that the correction is the comprehensive effects of both environmental and meteorological factors.
Keywords:machine learning model  precipitation data  correction  Tibetan Plateau  
本文献已被 CNKI 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号