首页 | 本学科首页   官方微博 | 高级检索  
     

基于MODIS的青藏高原逐日无云积雪产品算法
引用本文:邱玉宝,张欢,除多,张雪成,于小淇,郑照军. 基于MODIS的青藏高原逐日无云积雪产品算法[J]. 冰川冻土, 2017, 39(3): 515-526. DOI: 10.7522/j.issn.1000-0240.2017.0058
作者姓名:邱玉宝  张欢  除多  张雪成  于小淇  郑照军
作者单位:1. 中国科学院 遥感与数字地球研究所 数字地球重点实验室, 北京 100094;2. 北京旋极伏羲大数据技术有限公司, 北京 100081;3. 西藏高原大气环境科学研究所, 西藏 拉萨 850000;4. 西安科技大学, 陕西 西安 710054;5. 中国气象局国家卫星中心, 北京 100081
基金项目:国家自然科学基金;中国科学院国际合作局对外合作重点项目;公益性行业(气象)科研专项
摘    要:
青藏高原积雪对高亚洲地区水和能量循环起着重要的反馈和调节作用,其变化影响着融雪性河流流量,对下游水资源和经济活动具有重要影响。中分辨率成像光谱仪(MODIS)具有较高的时空分辨率,被广泛应用于积雪遥感动态监测,然而光学遥感积雪受云层影响严重,且青藏高原地区水汽分布不均,局地对流活跃,积雪的赋存时间变化快,这给高原地区逐日积雪监测及其气候学制图带来挑战。在考虑青藏高原地形和积雪分布特征情况下,结合现有的云覆盖下积雪判别算法,采用8个不同方法的组合,逐步实现MODIS逐日无云积雪算法。选取2009年10月1日-2011年4月30日两个积雪季为研究期,并采用145个地面台站观测雪深数据对去云算法各步骤过程开展精度验证,结果表明:当积雪深度>3 cm时,逐日无云积雪产品总分类精度达到96.6%,积雪分类精度达83%,积雪判对概率(召回率)达到89.0%,算法可实现青藏高原地区逐日无云积雪动态监测和积雪覆盖气候学数据重建,对高亚洲地区的水、生态和灾害等全球环境变化影响研究具有重要的意义。

关 键 词:青藏高原  积雪遥感  去云算法  MODIS  逐日无云雪盖产品  
收稿时间:2017-01-13
修稿时间:2017-03-12

Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau
QIU Yubao,ZHANG Huan,Chuduo,ZHANG Xuecheng,YU Xiaoqi,ZHENG Zhaojun. Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 515-526. DOI: 10.7522/j.issn.1000-0240.2017.0058
Authors:QIU Yubao  ZHANG Huan  Chuduo  ZHANG Xuecheng  YU Xiaoqi  ZHENG Zhaojun
Affiliation:1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;2. Beijing Watertek Fu Xi Big Data Technology Co., Ltd, Beijing 100081, China;3. Tibetan Institute of Atmospheric Environment and Science, Lhasa 850000, China;4. Xi'an University of Science and Technology, Xi'an 710054, China;5. National Satellite Meteorological Center, Beijing 100081, China
Abstract:
Snow cover on the Tibetan Plateau plays an important role in feedback and regulating to water and energy cycles of the High Asia. Snow melt supplies river runoff, which has an important influence on the social and economic development for the downstream areas. Medium resolution imaging spectrometer (MODIS) is widely used in dynamic remote sensing to monitor snow cover variation, because of its high temporal and spatial resolution. However, optical remote sensing snow cover is seriously affected by cloudy weather. Especially, water vapor over the plateau is low and inhomogeneous, with active convection, resulting in snow cover rapid changing. All the problems bring a challenge to the daily cloud-free snow monitoring and snow climatology mapping in the plateau. Considering the local terrain and snow cover characteristics in the Tibetan Plateau, in this study, based on the existing cloud removal algorithms, gradually controlling cloudage, the daily cloud-free MODIS snow cover algorithm has been carried out. The snow depth records from 145 ground stations for two snow seasons, from 1st October, 2009 through 30th April, 2011, are used to qualify the accuracies of various algorithm processes. The qualifying show that when snow depth is above 3 cm, the total classification accuracy of daily cloud-free snow products is 96.6%, snow classification accuracy is 83.0% and the recall rate is 89%. The new cloud removal process is proved having high precision and is suitable for daily dynamic monitoring snow cover. It provides a new way for reconstructing snow climatology data over the Tibetan Plateau. It is useful to study global environmental change, such as water, ecology, disaster and their impacts on the High Asia.
Keywords:Tibetan Plateau  remote sensing of snow cover  MODIS  cloud removing algorithm  daily cloud-free snow cover products  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号