摘 要: | 地质体边缘深度在重、磁位场数据半定量解释中起着至关重要的作用。由于重、磁异常及其各阶导数均满足欧拉齐次方程,tilt-Euler法在边缘深度反演方面备受青睐。然而,当重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数无法计算,导致倾斜角不能满足欧拉方程,tilt-Euler法无法使用。为了解决此问题,本文基于正则化思想,对倾斜角的一阶导数进行修改,使得重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数依然可以计算,修改后的倾斜角导数依然满足欧拉方程,称改进的方法为rtilt-Euler法;同时利用识别精度更高的归一化总水平导数垂向导数(NVDR-THDR)边缘识别方法对反演结果进行约束,剔除偏离边缘位置的坏点。理论模型试验结果表明,改进后的方法消除了重、磁异常总水平导数或者总梯度模很小或者等于0时,倾斜角导数无法计算以及反演结果不稳定的问题。将该方法应用到澳大利亚奥林匹克坝氧化铁铜金矿床边缘深度反演中,反演结果显示氧化铁铜金矿床边缘深度主要集中在0~100 m和100~200 m这两个深度段内,与沉积物剖面显示的矿床边缘深度0~200 m相符,证明了该方法的有效性。
|