首页 | 本学科首页   官方微博 | 高级检索  
     

基于普查和手机定位数据的乡镇尺度人口空间化方法研究
引用本文:王晓洁,王卷乐,薛润生. 基于普查和手机定位数据的乡镇尺度人口空间化方法研究[J]. 地球信息科学学报, 2020, 22(5): 1095-1105. DOI: 10.12082/dqxxkx.2020.190806
作者姓名:王晓洁  王卷乐  薛润生
作者单位:1.山东理工大学建筑工程学院,淄博 2550492.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 1001013.江苏省地理信息资源开发与利用协同创新平台,南京 2100234.山东科技大学,青岛 266590
基金项目:中国科学院战略性先导科技专项(A类XDA19040501);中国工程科技知识中心建设项目(CKCEST-2019-3-6);中国科学院“十三五”信息化专项科学大数据工程项目(XXH13505-07)
摘    要:人口在空间上的实际分布是人口地理学研究的基础和热点问题。目前全球不同尺度的人口空间化数据产品因生产方法、数据源等有较大差异,空间化产品的一致性存在较大差异,尤其是共性需求集中的1 km数据产品。本文以京津冀地区为研究区,基于2000年乡镇尺度的人口普查数据和可开放获得的手机定位数据,利用光影投射法计算人口分布权重,结合面积权重法和指数平滑法得到京津冀地区1 km分辨率的人口空间化结果PJ2000。该产品较好地反映了京津冀人口实际分布细节特征。经精度评定,PJ2000人口空间化的总体精度为90%,人口空间化相对误差小于0.5的乡镇(街道)数约占87%,PJ2000与2000年乡镇街道人口统计数据pop2000的相关系数r高达0.95。结果证明,结合乡镇尺度人口统计数据和手机定位数据等多源数据所构建的人口空间化模型,所获1 km分辨率人口密度数据集精度得到显著提高。

关 键 词:人口密度  空间化  人口学  乡镇尺度  手机定位  光影投射  指数平滑  京津冀  
收稿时间:2019-12-26

Research on Population Spatialization Method in Township Scale based on Census and Mobile Location Data
WANG Xiaojie,WANG Juanle,XUE Runsheng. Research on Population Spatialization Method in Township Scale based on Census and Mobile Location Data[J]. Geo-information Science, 2020, 22(5): 1095-1105. DOI: 10.12082/dqxxkx.2020.190806
Authors:WANG Xiaojie  WANG Juanle  XUE Runsheng
Affiliation:1. School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China2. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China4. Shandong University of Science and Technology, Qingdao 266590, China
Abstract:Quantifying the spatial distribution of population is a basis and hot issue in population geography researches. At present, there are large differences between different scales of spatialized population data in the world, because of various production methods, data sources, etc. This leads to the inconsistency of population spatialization, especially the 1 km-scale data which is widely needed. This paper takes Beijing-Tianjin- Hebei region as study area to build a population spatialized model at 1 km spatial resolution, based on multi-source data such as the township scale census data in 2000 and available mobile location data. The statistic population distribution weight (p) is calculated using the light projection method. Preliminary population spatialization is calculated using the area-weighted method, and the preliminary data is further modified by the exponential smoothing algorithm. Finally, the population spatialization dataset (PJ2000) with 1 km resolution in Beijing-Tianjin-Hebei region is obtained. This dataset integrates the small-scale characteristics of the township street demographic data and the advantages of mobile phone location data. The PJ2000 dataset reflects the actual location and the detailed characteristics of the population distribution in Beijing-Tianjin-Hebei region. Combined with the population density dataset (i.e., WorldPop) and China's kilometer gridded population spatial distribution dataset, the accuracy assessment of PJ2000 is carried out from three aspects: method difference, quantitative error, and regional comparison. The PJ2000 dataset solves the problem of the different distribution of population density over the same land cover type but different towns, and addresses the large difference in the gridded data of population spatialization. The overall accuracy of PJ2000 dataset is 90%, with 87% townships (streets) showing relative error less than 0.5. The correlation coefficient (r) between PJ2000 and the pop2000 township demographic data in the year of 2000 is 0.95. In addition, the population density distribution of this dataset is relatively uniform at the local to large scale. Our results prove that the accuracy of the population density dataset with 1km scale is significantly improved. The population spatialization model is constructed by integrating multi-source data such as township-level demographic data and mobile location data. In the future, it is expected that this method could be applied to obtain the population spatialization distribution for other city agglomerations. Our model could provide high-quality population density dataset for collaborative development of urban agglomeration and risk assessment of natural and man-made disasters in cities, such as earthquake, flood, fire, and public infectious diseases.
Keywords:Population density  Spatialization  Demography  Township level  Mobile phone location  Light projection  Exponential smoothing  Beijing  Tianjin and Hebei  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号