首页 | 本学科首页   官方微博 | 高级检索  
     


Incorporation of U,Pb and Rare Earth Elements in Calcite through Crystallisation from Amorphous Calcium Carbonate: Simple Preparation of Reference Materials for Microanalysis
Authors:Yusuke Miyajima  Ayaka Saito  Hiroyuki Kagi  Tatsunori Yokoyama  Yoshio Takahashi  Takafumi Hirata
Abstract:Uncertainty for elemental and isotopic measurements in calcite by LA‐ICP‐MS is largely controlled by the homogeneity of the reference materials (RMs) used for calibration and validation. In order to produce calcite RMs with homogeneous elemental and isotopic compositions, we incorporated elements including U, Pb and rare earth elements into calcite through heat‐ and pressure‐induced crystallisation from amorphous calcium carbonate that was precipitated from element‐doped reagent solution. X‐ray absorption spectra showed that U was present as U(VI) in the synthesised calcite, probably with a different local structure from that of aqueous uranyl ions. The uptake rate of U by our calcite was higher in comparison with synthetic calcite of previous studies. Variations of element mass fractions in the calcite were better than 12% 2RSD, mostly within 7%. The 207Pb/206Pb ratio in the calcite showed < 1% variations, while the 238U/206Pb ratio showed 3–24% variations depending on element mass fractions. Using the synthetic calcite as primary RMs, we could date a natural calcite RM, WC‐1, with analytical uncertainty as low as < 3%. The method presented can be useful to produce calcite with controlled and homogeneous element mass fractions and is a promising alternative to natural calcite RMs for U‐Pb geochronology.
Keywords:amorphous calcium carbonate  calcite  laser ablation‐inductively coupled plasma‐mass spectrometry  reference material  U‐Pb dating
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号