首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A relation between the vectors of stress,wind, and current at water surfaces and between the shearing stress and velocities at solid boundaries
Authors:H P Schmitz
Abstract:Summary The condition of a continuous transfer of mechanical energy from air to water may be satisfied not only by the equality of wind and current vectors at the surface but also by a difference of both vectors being perpendicular to the direction of the surface stress. It gives a simple explanation for the possible gliding of the air on water surfaces which gets evident by observed deflections between wind and surface currents not only in rivers and near the shore but also in the ocean.The work of the mean wind stress at the water surface may be transformed to turbulence and wave energy of the water and to eddy energy of the air. Near solid boundaries the work of the average shearing stress must be transformed into eddy energy flowing from the boundary into the fluid. In this way its turbulence may be maintained even in the presence of a very stable stratification.
Eine Beziehung zwischen Wind-, Strom- und Spannungsvektor an der Wasseroberfläche und zwischen Schubspannung und Geschwindigkeit an festen Begrenzungen
Zusammenfassung Aus zweidimensionalen Grenzschichtbetrachtungen folgert man, da\ die Geschwindigkeitsvektoren von Luft und Wasser an dessen Oberfläche keine Differenz aufweisen. Doch die naheliegende Forderung nach Kontinuität des übergangs mechanischer Energie durch die Wasseroberfläche hat mit Rücksicht auf die dynamische und die kinematische Grenzflächenbedingung zur Folge, da\ in jedem Augenblick und somit auch im zeitlichen oder flächenhaften Mittel an dieser wie an jeder Grenzfläche das skalare Produkt zwischen dem Differenzvektor der Oberflächengeschwindigkeiten von Luft und Wasser und dem Schubspannungsvektor verschwindet. Diese Bedingung ist auf dem Wasser nicht nur dadurch erfüllbar, da\ die augenblickliche Differenz der Geschwindigkeitsvektoren ständig verschwindet, sondern ebenfalls dadurch, da\ ihre Tangentialkomponente senkrecht auf dem Schubspannungsvektor an der augenblicklichen Grenzfläche steht. Die Summe der Arbeitsleistungen der Normalspannungen oberhalb und unterhalb der Grenzfläche ist automatisch Null wegen der kinematischen Grenzflächenbedingung und daher in diesem Zusammenhang ohne Belang.Auch wenn die mittleren Richtungen von Strom, Wind und Schubspannung gleich sind, ist bei turbulenter Bewegung an der Grenzfläche die Kontinuität des Energieübergangs nur gewährleistet, wenn die Oberfläche unregelmä\ig (der Turbulenz entsprechend) deformiert ist, wobei eine Differenz in den Beträgen von mittlerem Strom und Wind möglich und ebenso physikalisch erklärbar wird wie die beobachteten — auf Flüssen und im Küstengebiet zwangsläufigen — Unterschiede ihrer mittleren Richtungen.Im Falle verschiedener Richtungen von Wind und Strom gibt es die Möglichkeit, da\ die mittleren Vektoren von Wind und Schubspannung annähernd gleichgerichtet sind, nur, wenn ein erheblicher Teil der Arbeitsleistung der mittleren Schubspannung an der Wasseroberfläche in Turbulenz- und Wellenenergie übergeführt wird. Sind die mittleren Vektoren von Wind und Strom senkrecht zueinander und im Betrage gleich, weichen beide von der Schubspannung um 450 ab (was mit der Ekmanschen Theorie nichts zu tun hat). Es besteht bei Verschiedenheit der mittleren Richtungen von Strömung und Wind nicht die Möglichkeit, da\ Schubspannungs- und Windvektor gleichgerichtet sind und au\erdem die Arbeitsleistung des mittleren Windfeldes vollständig dem mittleren Stromfeld zugeführt und nicht teilweise in Turbulenzenergie verwandelt wird.Eine Bestimmung des Windschubs auf Grund der Prandtlschen Konzeption aus Beobachtungen vertikaler Windverteilungen nahe der Wasseroberfläche ist nicht mehr in Erwägung zu ziehen, weil dabei u. a. die Richtungen von Wind- und Schubspannungsvektor als gleich vorausgesetzt werden. Die mögliche Differenz der Richtungen von Wind und Schubspannung wäre auch in numerischen Berechnungen z. B. von Sturmfluten zu berücksichtigen, insbesondere, wenn der Oberflächenstrom infolge Küstennähe und Gezeitenstroms beträchtliche Richtungsabweichungen vom Wind aufweist.Nicht nur die mögliche Arbeitsleistung des turbulenten Zusatzfeldes durch seine Tangential-(und Normal-) Spannungen kann zur Erzeugung und Entwicklung von Windwellen beitragen. Auch eine direkte Arbeitsleistung des ausgeglichenen Windfeldes wirkt schon bei schwachem Wind in derselben Weise; sie ist zur Erzeugung von Driftströmen sogar notwendig, da das turbulente Zusatzfeld des Windes durch seine Arbeitsleistung nur die Turbulenz- und Wellenenergie des Wassers, aber nicht die Bewegungsenergie seines mittleren Stromfeldes zu vergrö\ern vermag. Demgegenüber kann mit Hilfe der Fluktuationen an der Wasseroberfläche die (wie nahe festen Begrenzungen) mit einem Gleiten verbundene Arbeitsleistung des ausgeglichenen Windfeldes verwandelt werden in Turbulenzenergie. In der Randschicht von festen Begrenzungen mu\ dies vollständig geschehen, da an ihnen keine Arbeit geleistet werden kann. Das führt zu einem Strom von Turbulenzenergie von der Begrenzung in das Stromfeld hinein, wodurch auch bei sehr stabiler und Turbulenz dämpfender Schichtung eine Erhaltung des turbulenten Zusatzfeldes und ein Abbau der Stabilität in Grenzflächennähe gefördert wird.Die entwickelten Vorstellungen widersprechen teilweise den vorherrschenden, welche den vektoriellen Charakter des Geschwindigkeitsfeldes ungenügend berücksichtigen oder zu weitgehender Analogie zu bewährten Modellen von laminaren Strömungen ihre Entstehung verdanken. Man mag in der Strömungslehre mit diesen Unvollkommenheiten auskommen; dennoch lä\t sich nicht leugnen, da\ sie keine Erklärung bekanntester Beobachtungstatsachen der Meteoro-Hydrographie wie z. B. die Richtungsabweichung zwischen Strom und Wind an der Wasseroberfläche gestatten. Au\erdem erklären sie nicht die Entwicklung von Fluktuationen an der Oberfläche als Erfordernis für einen kontinuierlichen übergang von Bewegungsenergie bei Verschiedenheit der mittleren Vektoren von Strom und Wind. Es erscheint daher unumgänglich, die bisherige Konzeption in geophysikalisch nutzbringender Weise zu erweitern, was hier versucht wurde.

Une relation entre le vecteur de la tension, le vecteur du vent et le vecteur du courant à la surface de l'eau d'une part et entre le frottement tangentiel et la vitesse auprès de limites solides, d'autre part
Résumé La supposition d'un transfert de l'énergie mécanique de l'atmosphère à la surface de l'eau peut Être satisfaite non seulement par l'égalité des vecteurs du vent et du courant mais encore par la différence des deux vecteurs qui s'élève perpendiculairement au sens de la tension superficielle. Les observations suivant lesquelles le courant du vent dévie du courant de l'eau, ce qui se manifeste non seulement au-dessus des rivières ou au voisinage de la cÔte mais aussi audessus de 1'océan, expliquent d'une manière simple 1'existence possible du mouvement glissant de l'air au-dessus de la surface de l'eau.La puissance du frottement tangentiel moyen dû au vent à la surface de l'eau peut se transformer en mouvement turbulent et en énergie des vagues ou en énergie tourbillonnaire de l'air. Au voisinage des limites solides, le frottement tangentiel moyen doit se transformer en énergie tourbillonnaire qui, partant de la limite solide, se propage vers la fluide. De cette manière 1'état turbulent peut se maintenir mÊme en présence d'une stratification stable.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号