首页 | 本学科首页   官方微博 | 高级检索  
     


TG/plus—a pyrolysis method for following maturation of oil and gas generation zones using Tmax of methane
Authors:Jean Whelan   Robert Carangelo   Peter R. Solomon  Wallace G. Dow
Abstract:Thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) analyses were carried out on two sets of isolated kerogens covering a wide maturity range from low mature (0.46% Ro) through the end of oil and gas generation (maximum Ro = 5.32%). Data onweight percent and Tmax for evolution of methane, volatile tars, ethylene, SO2, NH3, CO2, and CO are reported. The Tmax of methane shows the most consistent response to increasing maturation in both sets of samples. Results are comparable to those of whole rocks from an Alaskan North Slope well analyzed previously. The collective data for both whole rocks and isolated kerogens shows a generally linear correlation between %Ro and Tmax of methane, with the exception of Ro of about 2.0% where a dip in the curve occurs. The slope of the correlation line was steeper for the predominantly terrigenous Wilcox kerogen than for more marine Colorado kerogen or for the Alaskan North Slope whole rock samples, probably reflecting differences in the chemical nature of various kerogen sets, which is also reflected by differences in the shapes of the pyrolysis curves of SO2, CO2, CO, H2O, and ethylene. These preliminary data indicate that Tmax of methane is a good maturation indicator for whole rocks and isolated kerogens up to an Ro of about 4%, which includes all of the wet gas and a considerable portion of the dry gas generation zones. This correlation was also observed for samples containing migrated bitumen, where it was not possible to obtain a reliable Tmax for the volatile tar (S2) peak. The more terrigenous Wilcox kerogens also showed a good correlation of the Tmax of ethylene with %Ro. Tmax of ammonia evolution did not correlate with maturity and occurred 100–200°C lower than previously found for whole rocks, consistent with a whole-rock source of pyrolytic ammonia for Alaskan whole rock samples. HI and OI indices were calculated in several ways and plotted to reflect kerogen type as well as both the residual oil and gas generation potential. The ratio of pyrolyzable to combustible sulfur (evolved as SO2) was independent of maturity and showed a clear difference between the more terrigenous Wilcox kerogens and the more marine Colorado kerogens.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号