首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geometric modelling of fades migration: theoretical development of f acies successions and local unconformities
Authors:Douglas J Cant
Institution:Geological Survery of Canada, I.S.P.G. 3303–33rd St. N.W., Calgary, Alberta T2L 2A7, Canada
Abstract:Geometric analysis shows that the angle of migration of coastal sedimentary facies is a function of the relative sea-level change and the thickness of sediment deposited or eroded. The angle of facies migration compared to the slopes on the sediment surface determines the degree of facies preservation and stratigraphic relationships to the surrounding facies. Vertical facies successions generated by radial migration of environments show a great deal of variety because the sediment surface in both marine and non-marine areas is concave-up. Both regressive and transgressive sequences with non-erosive marine-nonmarine contacts can be generated. Transgression at a slightly lower angle can form a ravinement surface cut on non-marine deposits with onlapping barrier sands or shallow marine deposits. Regression with relative sea-level drop generates a minor erosion surface with baselapping isolated shoreline deposits. Disequilibrium conditions occur when sea level varies at a rate exceeding the ability of the system to supply or redistribute sediment, with resulting changes in surficial slopes. Onlapping and downlapping stratal relationships across erosion surfaces result because of differences in slopes between marine and non-marine environments. These discontinuities are generally less than one degree, but could possibly be recognized on high quality multichannel seismic lines. Most of these discontinuities are probably not regionally extensive enough to be regarded as sequence boundaries. Tectonic tilting or differential subsidence of strata during depositional hiatuses is necessary to generate true regional unconformities or sequence boundaries. Where facies climb with respect to horizontal, erosion surfaces produced only by this migration may cut across lithostratigraphic units at higher angles, up to 3 or 4 degrees. Low-angle erosion surfaces relevant to the scales of sequence stratigraphic studies may result only from facies migration, even during a period of relative sea-level rise.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号