首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The disruption of planetary satellites and the creation of planetary rings
Authors:JE Colwell  
Institution:

aLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309-0392, U.S.A.

Abstract:The Voyager spacecraft discovered that small moons orbit within all four observed ring systems coincident with the discovery of narrow and dusty rings around Jupiter, Saturn, Uranus and Neptune. These moons can provide the source for new rings if they are catastrophically disrupted by a comet or large meteoroid impact. This hypothesis for ring origins provides a natural mechanism for the ongoing creation of planetary rings. While it relieves somewhat the problem of explaining the continued existence of rings with apparently short evolutionary lifetimes, it raises the problem of explaining the continued existence of small moons, and the coexistence of moons and rings at comparable locations within the Roche zones of the giant planets. This problem has been studied in some detail recently, and the present work is a review of our current understanding of the processes in satellite disruption that pertain to the creation of planetary rings and the collisional cascade of circumplanetary bodies. Significant progress has been made. Narrow rings are produced by disruption of small moons in numerical simulations, and a self-consistent model of the collisional cascade can explain present-day moon populations. Absolute timescales and initial moon populations remain uncertain due to our poor knowledge of the impactor population and uncertainties in the strength of planetary satellites. More pressing are the qualitative issues that remain to be resolved including the nature of reaccretion of the debris and the origin of Saturn's rings.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号