首页 | 本学科首页   官方微博 | 高级检索  
     检索      

西伯利亚风暴轴的气候特征及其可能维持机制
引用本文:马阳,朱伟军,李天宇,王森,李欣.西伯利亚风暴轴的气候特征及其可能维持机制[J].气象科学,2017,37(5):587-597.
作者姓名:马阳  朱伟军  李天宇  王森  李欣
作者单位:南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044,南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044,南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044,南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044,南京信息工程大学 气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044
基金项目:国家自然科学基金资助项目(41575070;41075070);公益性行业(气象)科研专项(GYHY201306028);江苏高校优势学科建设工程(PAPD)
摘    要:基于1959—2014年NCEP/NCAR的逐日再分析资料,首先研究了西伯利亚风暴轴各季节的气候平均特征,然后以冬季为例,利用能量诊断方程,从能量学的角度对其的可能维持机制进行了探讨,并在上述分析过程中与北半球两大洋风暴轴的特征进行了对比。结果表明:(1)西伯利亚风暴轴一年四季都独立存在,虽强度要比两大洋风暴轴的强度弱很多且位置偏北,但可以定义为一个弱风暴轴。(2)比较来看,西伯利亚风暴轴强度的季节变化与北太平洋风暴轴的季节变化类似。与两大洋风暴轴位于急流东北侧不同,冬季西伯利亚风暴轴位于东亚温带急流的西侧。(3)进一步的能量分析结果表明,与两大洋风暴轴一样,斜压不稳定的能量转换(Ke4)也是西伯利亚风暴轴区域天气尺度扰动动能的主要来源;而扰动非地转位势通量散度项(Ke3)和时间平均气流对扰动动能的平流输送项(Ke1)也是风暴轴下游发展所需的扰动动能来源之一。

关 键 词:风暴轴  能量诊断  维持机制
收稿时间:2016/11/19 0:00:00
修稿时间:2017/1/15 0:00:00

The climatic characteristics of Siberian storm track and its possible maintenance mechanism
MA Yang,ZHU Weijun,LI Tianyu,WANG Sen and LI Xin.The climatic characteristics of Siberian storm track and its possible maintenance mechanism[J].Scientia Meteorologica Sinica,2017,37(5):587-597.
Authors:MA Yang  ZHU Weijun  LI Tianyu  WANG Sen and LI Xin
Institution:Key Laboratory of Meteorological Disaster, Ministry, Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China,Key Laboratory of Meteorological Disaster, Ministry, Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China,Key Laboratory of Meteorological Disaster, Ministry, Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China,Key Laboratory of Meteorological Disaster, Ministry, Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China and Key Laboratory of Meteorological Disaster, Ministry, Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:Based on the daily NCEP/NCAR reanalysis data during 1959-2014, the climatic mean characteristic of Siberian storm track was firstly investigated. And then, the energy diagnostic equation was used to discuss its possible maintenance mechanism in winter and compared with Siberian storm track with the North Pacific Storm Track (NPST) and Northern Atlantic Storm Track (NAST). Results show that:(1) Siberian storm track exists independently in four seasons. Although its intensity is the weakest and its position is to the north compared with the NPST and NAST, it still can be defined as a weak storm track. (2) The seasonal variation of Siberian storm track intensity is similar to that of the NPST. Unlike the northeastern location of the jet of two oceanic storm tracks, the Siberian storm track is located on the west side of the East Asian Polar-front Jet. (3) The further energy analysis results show that the baroclinic energy conversion (Ke4) is the main energy source of the Siberian storm track. The advective transport term of time-averaged airflow to eddy kinetic energy (Ke1) and eddy ageostrophic geopotential flux (Ke3) also play an important roles in the maintenance of the storm track in its eastern part.
Keywords:Storm track  Energy budget analysis  Maintenance mechanism
本文献已被 CNKI 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号