首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geodynamic evolution of Jbel Cheid (Northern Tunisian Atlas) from geophysical and geological data
Authors:Ramdhane Benassi
Institution:1. Département de Géologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Campus Universitaire, Tunis, Tunisia
Abstract:Understanding the formation and the development of salt structures is very important especially because they are of significant economical interest. Detailed understanding of this process will help reservoir prediction and hydrocarbon recovery. In this work, we use a combination of geological observations along with the interpretation of geophysical data (seismic and Bouguer anomaly data) to better constrain the geology of the Jbel Cheid structure. The shape of Triassic body of Jbel Cheid (Northern Tunisian Atlas) structure and its geodynamic evolution have been determined by gravity analyses and 2.5D modeling, correlated with others geophysical data (seismic) and geological observations. Semi-automatic structural analysis was performed before modeling, to identify lateral gravity discontinuities. The complete Bouguer and residual gravity anomaly maps indicate a positive amplitude gravity anomaly over the Triassic evaporitic outcrop (Jbel Cheid) and prominent NE–SW-trending features associated with the boundary of the Triassic rocks and surrounded layers. The seismic profile shows a thickness variation of post-salt layers. Taking into account the 2.5D gravity model, seismic profile and surface data, geodynamic evolution of Jbel Cheid can be subdivided on three stages (reactive, active, and passive) which well correlated to the model proposed by Vendeville (2002).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号