首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial disaggregation of ASCAT soil moisture under all sky condition using support vector machine
Authors:Seongkyun?Kim  Jaehwan?Jeong  Muhammad?Zohaib  Email author" target="_blank">Minha?ChoiEmail author
Institution:1.Environment and Remote Sensing Laboratory, Department of Water Resources, Graduate School of Water Resources,Sungkyunkwan University,Suwon,Republic of Korea
Abstract:With recent advances in downscaling methodologies, soil moisture (SM) estimation using microwave remote sensing has become feasible for local application. However, disaggregation of SM under all sky conditions remains challenging. This study suggests a new downscaling approach under all sky conditions based on support vector regression (SVR) using microwave and optical/infrared data and geolocation information. Optically derived estimates of land surface temperature and normalized difference vegetation index from MODerate Resolution Imaging Spectroradiometer land and atmosphere products were utilized to obtain a continuous spatio-temporal input datasets to disaggregate SM observation from Advanced SCATterometer in South Korea during 2015 growing season. SVR model was compared to synergistic downscaling approach (SDA), which is based on physical relationship between SM and hydrometeorological factors. Evaluation against in situ observations showed that the SVR model under all sky conditions (R: 0.57 to 0.81, ubRMSE: 0.0292 m3 m?3 to 0.0398 m3 m?3) outperformed coarse ASCAT SM (R: 0.55 to 0.77, ubRMSE: 0.0300 m3 m?3 to 0.0408 m3 m?3) and SDA model (mean R: 0.56 to 0.78, ubRMSE: 0.0324 m3 m?3 to 0.0436 m3 m?3) in terms of statistical results as well as sensitivity with precipitation. This study suggests that the spatial downscaling technique based on remote sensing has the potential to derive high resolution SM regardless of weather conditions without relying on data from other sources. It offers an insight for analyzing hydrological, climate, and agricultural conditions at regional to local scale.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号