Abstract: | Trajectories of eruptive prominences are compared with the shapes of coronal neutral surfaces calculated in a potential approximation using photospheric measurements. Space-based Solar Dymamics Observatory and STEREO observations carried out at different viewing angles enable a precise determination of a prominence’s position at successive times during its eruption. In the initial segments of their trajectories, eruptive prominences move along neutral surfaces (Br = 0) of the potential coronal magnetic field. This can be used to predict the directions of subsequent coronal mass ejections and to estimate their geoefficiency. |