首页 | 本学科首页   官方微博 | 高级检索  
     

基于冻融交界面直剪试验的冻土斜坡失稳过程研究
引用本文:高樯,温智,王大雁,牛富俊,谢艳丽,苟廷韬. 基于冻融交界面直剪试验的冻土斜坡失稳过程研究[J]. 岩土力学, 2018, 39(8): 2814-2822. DOI: 10.16285/j.rsm.2016.2552
作者姓名:高樯  温智  王大雁  牛富俊  谢艳丽  苟廷韬
作者单位:1. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州,730000; 2. 中国科学院大学,北京 100049;3. 国网青海电力公司电力科学试验研究院,青海 西宁 810008
基金项目:国家自然科学基金项目(No. 41771073,No. 41471061,No. 41690144);中国科学院国际合作局对外合作重点项目(No. 131B62KYSB20170012);冻土工程国家重点实验室自主课题(No. SKLFSE-ZT-22)。
摘    要:为了探讨多年冻土区自然斜坡失稳机制,开展了不同含水率黏土、粉土、砂土的土-冰交界面直接剪切试验和相应融土的直接剪切试验。结果表明,砂土和砂土-冰冻融交界面剪切应力-变形特性主要表现为弹性变形,且剪应力存在明显峰值;粉土、黏土及相应的冻融交界面在很小的变形范围内表现为塑性变形,且剪应力无峰值。水分对砂土活动层抗剪强度影响较弱,表现为水分增高,内摩擦角小幅降低。水分对粉黏土活动层抗剪强度影响剧烈,表现为水分增高,粉黏土黏聚力急剧减小。研究发现,冻土区斜坡失稳更易发生于细颗粒粉黏土中。相对于粉土,粉土-冰冻融交界面抵抗剪切变形的能力更强,粉土斜坡潜在滑动面更易发育在冻融交界面上层附近;相对于黏土,黏土-冰冻融交界面抵抗剪切变形的能力更弱,黏土斜坡更易在冻融交界面处发生滑动。同时,细粒土斜坡极易在达到最大融化深度前提前失稳,斜坡坡度越高,失稳时间越提前。融化期活动层水分增多导致潜在滑动面黏聚力降低是细粒土冻土斜坡失稳的最主要原因,孔隙水压对冻土斜坡具有一定影响,在稳定性评价时要考虑活动层水位的影响。

关 键 词:斜坡失稳  冻融交界面  直剪试验  滑动面  多年冻土  
收稿时间:2016-11-01

Study on the instability process of slopes in permafrost regions by direct shear test of freezing-thawing interface
GAO Qiang,WEN Zhi,WANG Da-yan,NIU Fu-jun,XIE Yan-li,GOU Ting-tao. Study on the instability process of slopes in permafrost regions by direct shear test of freezing-thawing interface[J]. Rock and Soil Mechanics, 2018, 39(8): 2814-2822. DOI: 10.16285/j.rsm.2016.2552
Authors:GAO Qiang  WEN Zhi  WANG Da-yan  NIU Fu-jun  XIE Yan-li  GOU Ting-tao
Affiliation:1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 2. University of Chinese Academy of Science, Beijing 100049, China; 3. Test Electric Power Research Institute of State Grid Qinghai Electric Power Company, Xining, Qinghai 810008, China
Abstract:To study the effect of mechanical property of freezing-thawing interface on slope stability, we carried out a series of direct shear tests of soils and ice-soil interfaces for saturated or nearly saturated gravel soil, silt, and clay under different normal stresses. Results show that the shear stress-deformation behaviors of gravel soil and corresponding thawing-freezing interface are all elastic deformation with clear peak shear stress. Silt, clay and corresponding thawing-freezing interfaces have plastic deformation within a small range, and there is no peak shear stress. Moisture content has little effect on shear strength of gravel soil in active layer, with little decreasing of the friction angles of gravel soil and ice-gravel soil interface with the increasing of moisture content. But for silt clay and clay soil, the effect of moisture on strength shows great decreasing of the cohesive force with the increasing of moisture content. We find that slope instability occurred more likely in the fine particle soil slope. Compared to silt soil, the corresponding thawing-freezing interface has a stronger resisting shear deformation ability, and the sliding slope will be in thawing soil layer above the interface, but the opposite the case for the clay soil. At the same time, the fine-grained soil slope tends to slide before reaching its maximum thawing depth. The higher the slope gradient, the earlier the time of instability. The main reason of slope failures in permafrost regions contributes to the lower cohesive force of sliding surface resulted from the higher moisture contents in active layers and the pore water pressure can affect the slope stability, and the influence of depth of water layer need to be taken into account.
Keywords:slope failure  freezing-thawing interface  direct shear teat  failure surface  permafrost  
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号