首页 | 本学科首页   官方微博 | 高级检索  
     

砂卵石地层土压盾构掘进掌子面稳定性室内试验与三维离散元仿真研究
引用本文:王俊,王闯,何川,胡雄玉,江英超. 砂卵石地层土压盾构掘进掌子面稳定性室内试验与三维离散元仿真研究[J]. 岩土力学, 2018, 39(8): 3038-3046. DOI: 10.16285/j.rsm.2016.2773
作者姓名:王俊  王闯  何川  胡雄玉  江英超
作者单位:1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都,610031;2. 四川省交通运输厅公路规划勘察设计研究院,四川 成都 610041
基金项目:中国工程院重点咨询项目(No. 2015-XZ-28-02);国家重点研发计划(No. 2016YFC0802201);2014年度西南交通大学博士研究生创新基金。
摘    要:采用?800 mm模型土压盾构开展室内掘进试验,以探究砂卵石中土压盾构隧道掌子面失稳诱发地层变形特征。同时,补充开展三维离散元仿真以挖掘室内试验难以获取的掌子面失稳信息,并研究隧道埋深对掌子面稳定性的影响规律。研究结果表明:砂卵石地层中盾构隧道掌子面失稳发展到地表后,沉降曲面呈上大下小逐步收缩的沙漏状,影响范围小于砂土地层。考虑盾构动态掘进过程后,卵石颗粒接触关系变化十分剧烈,掌子面稳定性被削弱,极限支护压力随之增大。掌子面极限支护压力随隧道埋深基本呈线性增加,极限支护压力与初始支护压力之比则随埋深增大而减小。掌子面失稳机制可根据隧道埋深划分为3种模式。与既有研究相比,考虑了盾构动态掘进过程与实际工程更加接近,可为确保砂卵石地层土压盾构隧道施工掌子面稳定提供参考。

关 键 词:砂卵石地层  土压盾构  掌子面失稳  室内试验  三维离散元  动态掘削  
收稿时间:2016-11-28

Heading stability analysis of EPB shield tunnel in sandy cobble ground using laboratory test and 3D DEM simulation
WANG Jun,WANG Chuang,HE Chuan,HU Xiong-yu,JIANG Ying-chao. Heading stability analysis of EPB shield tunnel in sandy cobble ground using laboratory test and 3D DEM simulation[J]. Rock and Soil Mechanics, 2018, 39(8): 3038-3046. DOI: 10.16285/j.rsm.2016.2773
Authors:WANG Jun  WANG Chuang  HE Chuan  HU Xiong-yu  JIANG Ying-chao
Affiliation:1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Sichuan Provincal Transportation Department Highway Planning, Survey, Design and Research Institute, Chengdu, Sichuan 610041, China
Abstract:The ?800 mm model EPB shield machine was used to study the deformation and failure model of earth pressure balance (EPB) shield tunnel in sandy cobble ground. Meanwhile, three dimensional discrete element method (DEM) simulations were conducted to assess the face stability and the influence of buried depth, which couldn’t be observed in laboratory test. Results show that, after tunnel losing stability, the ground settlement surface is “round funnel” shaped with a gradual contraction from top to bottom in sandy cobble ground. The influenced zone is smaller than that of sand. The dynamic soil-cutting process greatly destroys the initial soil fabric, and the face stability is weakened, thus the limit support pressure increases. The limit support pressure increases linearly as buried depth increases, while the ratio of limit support pressure to initial support pressure decreases with increasing buried depth. The face failure mechanism can be divided into three modes according to buried depth. The whole dynamic construction process considered in this paper is close to real constructions, and can serve as guideline for guaranteeing EPB shield tunnel stability in sandy cobble ground.
Keywords:sandy cobble ground  EPB shield  face failure  laboratory test  3D DEM  dynamic soil-cutting process  
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号