首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure of mineral glasses—III. NaAlSi3O8 supercooled liquid at 805°C and the effects of thermal history
Authors:Mark Taylor  Gordon E Brown  Philip M Fenn
Institution:Department of Geology, Stanford University, Stanford, CA 94305, U.S.A.
Abstract:The distribution of interatomic distances in amorphous NaAlSi3O8 has been determined at 805°C by X-ray radial distribution analysis to investigate structural differences between the glass (T < 763°C) and the supercooled liquid (763°C < T < 1118°C). Except for slight differences attributable to thermal expansion, no significant changes were observed. The sample crystallized during the course of the experiment, but at least one crystal-free data set was obtained. The transition from the inferred six-membered ring structure of the supercooled liquid to the four-membered ring structure of the crystal was clearly visible in radial distribution function (RDF's) determined before and after crystallization.RDF's were also determined at 25°C for two NaAlSi3O8 glasses with different histories. The first was derived from a melt that had been cooled slowly from 1600 to 32°C above the melting point (Tf = 1118°C) to detect possible repolymerization to a more ‘crystal-like’ structure as the melt approached Tf. The second glass was prepared by holding a single crystal of Amelia albite at 50°C above Tf to see if the crystalline four-membered ring structure was preserved in melts at temperatures just above the liquidus. No significant differences were observed between these two RDF's and one obtained from a glass quenched from 1800°C. These results suggest that in addition to the destruction of formation of a periodic structure, melting and crystallization in NaAlSi3O8 also involves a repolymerization of tetrahedra. This would explain the observed kinetic barrier to melting and crystallization in the anhydrous system and the catalytic effect of small amounts of water or alkali oxide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号