Astronomy Unit, School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London, E1 4NS, UK
Abstract:
In order to assess the possibility of meteoroid streams detectable from the surface of Mars as meteor showers we have derived minimum distances and associated velocities for a large sample of small body orbits relative to the orbits of Mars and the Earth. The population ratio for objects approaching to within 0.2 AU of these two planets is found to be approximately 2:1. The smaller relative velocities in the case of Mars appears to be the main impediment to the detection of meteors in the upper atmosphere of that planet. We identify five bodies, including the unusual object (5335) Damocles and periodic comet 1P/Halley, with relative orbital parameters most suitable to produce prominent meteor showers. We identify specific epochs at which showers related to these bodies are expected to occur. An overview of possible detection methods taking into account the unique characteristics of the Martian environment is presented. We pay particular attention on the effects of such streams on the dust rings believed to be present around Mars.