首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling of colloidal particle and heavy metal transfer behaviours during seawater intrusion and refreshing processes
Authors:Bo Tan  Shuguang Liu  Chaomeng Dai  Hui Zhou  Zhenquan Hui  Guihui Zhong  Hong Zhang
Institution:1. College of Civil Engineering, Tongji University, Shanghai, China;2. Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA;3. The Yangtze River Water Environment Key Laboratory of the Ministry of Education, Tongji University, Shanghai, China
Abstract:The proper management of coastal aquifers commonly requires an understanding of regional mass flow and complete seawater–freshwater circulation. In this study, time series observations of seawater intrusion and refreshing were conducted using a column experiment based on natural flow conditions in coastal groundwater and a sampled medium from a coastal sandy aquifer without chemical treatment. Ranges of hydrodynamic and hydrochemical variables were tested and analysed. The results showed that the zeta potential of suspended colloids in aqueous solution in an aquifer polluted with 0.5 g/kg of heavy metals exhibited an isoelectric point for pH values ranging from 5.70 to 6.07 when freshwater or seawater completely occupied the aquifer pores, which is representative of natural hydrochemical conditions. In this scenario, a high background concentration of heavy metals induced colloidal immobilization. Otherwise, seawater–freshwater circulation enabled colloid mobilization due to ionic strength and pH fluctuations. The migration of multiple heavy metals occurred at a characteristic time of approximately 1 pore volume after each intrusion stage began and when the peak rate of colloid release was reached. At these times, the colloid behaviour determined the quantity and pathway of heavy metal transport. On the basis of the influences of seawater and freshwater interactions, the quantity of mobilized particles generally decreased and was uniformly distributed in each fraction due to particle loss and decreased porous connectivity. We speculate that the decrease in the total surface area of the migratory colloids may cause colloid‐associated heavy metal transport to decrease. The experimental results provide a useful basis for testing coastal groundwater flow and mass transport models because these phenomena require full characterization to precisely evaluate the associated fluxes from the field scale to the microscopic dimension.
Keywords:colloid‐associated transport  column experiment  heavy metals  seawater intrusion  transport parameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号