首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Year‐round estimation of soil moisture content using temporally variable soil hydraulic parameters
Authors:Vaclav Sipek  Miroslav Tesar
Institution:The Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, Czech Republic
Abstract:Soil moisture plays a key role in the hydrological cycle as it controls the flux of water between soil, vegetation, and atmosphere. This study is focused on a year‐round estimation of soil moisture in a forested mountain area using the bucket model approach. For this purpose, three different soil moisture models are utilised. The procedure is based on splitting the whole year into two complement periods (dormant and vegetation). Model parameters are allowed to vary between the two periods and also from year to year in the calibration procedure. Consequently, two sets of average model parameters corresponding to dormant and vegetation seasons are proposed. The process of splitting is strongly supported by the experimental data, and it enables us to variate saturated hydraulic conductivity and pore‐size characterisation. The use of the two different parameter sets significantly enhances the simulation of two (Teuling and Troch model and soil water balance model‐green–ampt SWBM‐GA]) out of three models in the 6‐year period from 2009 to 2014. For these two models, the overall Nash‐Sutcliffe coefficient increased from 0.64 to 0.79 and from 0.55 to 0.80. The third model (the Laio approach) proved to be insensitive to parameter changes due to its insufficient drainage prediction. The variability of the warm and cold parameter sets between particular years is more pronounced in the warm periods. The cold periods exhibited approximately similar character during all 6 years.
Keywords:hydrological modelling  pore‐size distribution  saturated hydraulic conductivity  seasonal variability  soil hydraulic parameters  soil moisture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号