首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of well‐field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems
Authors:Zhilin Guo  Mark L Brusseau
Institution:1. Department Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA;2. Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Abstract:A three‐dimensional numerical model was used to simulate the impact of different well‐field configurations on pump‐and‐treat mass removal efficiency for large groundwater contaminant plumes residing in homogeneous and layered domains. Four well‐field configurations were tested, Longitudinal, Distributed, Downgradient, and natural gradient (with no extraction wells). The reductions in contaminant mass discharge (CMDR) as a function of mass removal (MR) were characterized to assess remediation efficiency. Systems whose CDMR‐MR profiles are below the 1:1 relationship curve are associated with more efficient well‐field configurations. For simulations conducted with the homogeneous domain, the CMDR‐MR curves shift leftward, from convex‐downward profiles for natural gradient and Longitudinal to first‐order behaviour for Distributed, and further leftward to a sigmoidal profile for the Downgradient well‐field configuration. These results reveal the maximum potential impacts of well‐field configuration on mass‐removal behaviour, which is attributed to mass‐transfer constraints associated with regions of low flow. In contrast, for the simulations conducted with the layered domain, the CMDR‐MR relationships for the different well‐field configurations exhibit convex‐upward profiles. The nonideal mass‐removal behaviour in this case is influenced by both well‐field configuration and back diffusion associated with low‐permeability units.
Keywords:back diffusion  groundwater contaminant plume  mass flux  plume persistence  pump and treat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号