首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phosphorus export dynamics and hydrobiogeochemical controls across gradients of scale,topography and human impact
Authors:Genevieve Ali  Henry Wilson  Jane Elliott  Amber Penner  Aminul Haque  Cody Ross  Maliheh Rabie
Institution:1. Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;2. Manitoba's Watershed Systems Research Program, Winnipeg, Manitoba, Canada;3. Center for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada;4. Brandon Research Centre, Agriculture and Agri‐Food Canada, Brandon, Manitoba, Canada;5. Environment and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan, Canada
Abstract:Concentration‐discharge (c‐Q) plots are routinely used as an integrated signal of watershed response to infer solute sources and travel pathways. However, the interpretation of c‐Q data can be difficult unless these data are fitted using statistical models. Such models are frequently applied for geogenic solutes, but it is unclear to what extent they might aid in the investigation of nutrient export patterns, particularly for total dissolved phosphorus (TDP) which is a critical driver of downstream eutrophication problems. The goal of the present study was therefore to statistically model c‐Q relations (where c is TDP concentrations) in a set of contrasting watersheds in the Northern Great Plains—ranging in size from 0.2 to 1000+ km2—to assess the controls of landscape properties on TDP transport dynamics. Six statistical models were fitted to c‐Q data, notably (a) one linear model, (b) one model assuming that c‐Q relations are driven by the mixing of end‐member waters from different landscape locations (i.e., hydrograph separation), (c) one model relying on a biogeochemical stationarity hypothesis (i.e., power law), (d) one model hypothesizing that c‐Q relations change as a function of the solute subsurface contact time (i.e., hyperbolic model), and (e) two models assuming that solute fluxes are mostly dependent on reaction rates (i.e., chemical models). Model performance ranged from mediocre (R2 < 0.2) to very good (R2 > 0.9), but the hydrograph separation model seemed most universal. No watershed was found to exhibit chemostatic behaviour, but many showed signs of dilution or enrichment behaviour. A tendency toward a multi‐model fit and better model performance was observed for watersheds with moderate slope and higher effective drainage area. The relatively poor model performance obtained outside these conditions illustrates the likely importance of controls on TDP concentrations in the region that are independent of flow dynamics.
Keywords:concentration‐discharge (c‐Q) relations  flow dynamics  landscape controls  modelling  northern Great Plains  total dissolved phosphorus (TDP)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号