首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxygen isotope fractionations involving pyroxenes: The calibration of mineral-pair geothermometers
Authors:Alan Matthews  Julian R Goldsmith  Robert N Clayton
Institution:Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, USA
Abstract:Oxygen isotope fractionations between wollastonite, diopside, jadeite, hedenbergite and water have been experimentally studied at high pressures (1<- PH2O ≥ 24 kbar) and temperatures (400/dgT <- 800/dgC) using the three-isotope method (Matsuhisa et al., 1978). Initial 18O16O fractionations were made close to equilibrium and initial 17O16O ratios were well removed from equilibrium, allowing accurate determinations of the equilibrium 18O16O fractionations and of the extent of isotopic exchange. Scanning electron microscope and rate studies show that the wollastonite-water and diopside-water exchange reactions occur largely by solution-precipitation (Ostwald Ripening) mechanisms. Equilibrium 18O16O fractionations between water and the minerals wollastonite, diopside, and hedenbergite are in close agreement with one another, whereas significantly more positive fractionations are found for jadeite-water. These isotopic substitution effects can be ascribed to replacement of SiOM bonds (M is a divalent metal cation in octahedral coordination) by higher frequency SiOAl bonds. The fractionations determined in this study can be combined with quartz- and feldspar-water data of Matsuhisa et al. (1979) and revised magnetite-water data of O'NEIL (1963), to provide a coherent set of mineral-pair fractionations satisfactorily represented by straight lines through the origin on a conventional graph of In /ga versus T?2. Mineral-water data, on the other hand, cannot readily be fitted to the simple relationship suggested by Bottinga and Javoy (1973). Coefficients “A” for the mineral-pair fractionations 1000 ln α = A × 106T?2 are:
AbJdAnDiWoMt
Q0.501.091.592.082.206.11
Ab0.591.091.581.705.61
Jd0.500.991.115.02
An0.490.614.52
Di0.124.03
Wo3.91
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号