首页 | 本学科首页   官方微博 | 高级检索  
     

基于逆算子估计的AVO反演方法研究
引用本文:印兴耀, 邓炜, 宗兆云. 基于逆算子估计的AVO反演方法研究[J]. 地球物理学报, 2016, 59(4): 1457-1468, doi: 10.6038/cjg20160426
作者姓名:印兴耀  邓炜  宗兆云
作者单位:中国石油大学(华东)地球科学与技术学院, 山东青岛 266580
基金项目:国家重点基础研究发展计划(2013CB228604),国家油气重大专项(2011ZX05030-004-002),中国博士后科学基金(2014M550379),山东省博士后基金(201401018)和山东省优秀中青年科学科研奖励基金(2014BSE28009)联合资助.
摘    要:传统反演算法以优化算法为主,而基于逆算子估计的AVO反演算法则利用了直接求逆的思路.算法的关键在于寻找存在逆函数的子域,进而可以在子域内直接求逆,这种解决反问题的思路不同于一般的优化类算法所采用的直接搜索解的方式,具有更高的效率.AVO反演利用了振幅随着偏移距的变化特征,反演的精度受到地震资料质量的影响,通过加入L1范数约束以及合理的初始模型有助于提高反演的稳定性以及准确度.模型测算和实际应用表明,基于逆算子估计的AVO反演方法具有较高的精确程度和可靠性.

关 键 词:AVO反演   逆算子估计   L1范数   初始模型
收稿时间:2015-03-20
修稿时间:2015-10-08

AVO inversion based on inverse operator estimation
YIN Xing-Yao, DENG Wei, ZONG Zhao-Yun. AVO inversion based on inverse operator estimation[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(4): 1457-1468, doi: 10.6038/cjg20160426
Authors:YIN Xing-Yao  DENG Wei  ZONG Zhao-Yun
Affiliation:Geo-Science and Technology Faculty, China University of Petroleum, Qingdao Shandong 266580, China
Abstract:Amplitude variation with amplitude or angle (AVO/AVA) inversion has been widely utilized in exploration geophysics to estimate the formation of elastic parameters underground. The traditional inversion algorithms are mainly optimization, while the AVO inversion based on inverse operator estimation is to inverse directly. The key is to find the subspaces which exist inverse mapping instead of searching for the solution directly as optimization algorithms do.#br# Aki&Richards approximation is utilized to establish the inversion objective function. L1 norm constraint is considered on the basis of reasonable initial model in order to improve effciency and stability during AVO inversion process. Inverse operator estimation algorithm utilizes numerical approximation of objective function in empirically constrained subspaces. The existence of inverse mapping inside these subspaces is supposed, and thus the existence of its numerical approximation is also supposed. This numerical approximation is used for the prediction of the solution. It can be divided into the following four steps: (1) initialization, (2) selection, (3)prediction,(4) solution space correction. Since this method is approximate, the algorithm is arranged into iterative cycles and the solution is gained successively.#br# Model test in which noise immunity and stability based on L1 norm constraint are considered lays the foundation for the actual data inversion. In the model test, the inversion results based on synthetic seismogram with different SNR noise remain good consistency with the model value. L1 constraint is necessary, a relatively stable result can be obtained in multiple inversion processes and it helps reduce the number of singular values. The seismic data is from China's land, inversion quality can be evaluated by well data and seismic data.Inversion results of actual seismic data maintain good consistency with logging curves.#br# Reliability of the solution, noise immunity and convergence speed can be improved by increasing the constraint requirements and considering reasonable initial models. Poor lateral continuity when dealing with actual data can be reduced by optimizing the objective function and the initial model. In general, AVO inversion based on inverse operator estimation is effective and potential.
Keywords:AVO inversion  Inverse operator estimation  L1 norm  Initial model
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号