首页 | 本学科首页   官方微博 | 高级检索  
     检索      

多通道瞬变电磁法2D有限元模拟
引用本文:王若,王妙月,底青云,薛国强.多通道瞬变电磁法2D有限元模拟[J].地球物理学报,2018,61(12):5084-5095.
作者姓名:王若  王妙月  底青云  薛国强
作者单位:1. 中国科学院页岩气与地质工程重点实验室, 北京 100029; 2. 中国科学院地质与地球物理研究所, 北京 100029; 3. 中国科学院地球科学研究院, 北京 100029
基金项目:国家重点研发计划"动力学建模及三维地球物理场模拟"(2016YFC0600507)、国家重大科研装备研制项目"深部资源探测核心装备研发"(ZDYZ2012-1)-05子项目"多通道大功率电法勘探仪"、国家重点研发计划(2016YFC0600101,2016YFC0601102)联合资助.
摘    要:

多通道瞬变电磁法的反演工作是在大地脉冲响应的基础上进行的,因此本文用2D有限元正演来求取大地脉冲响应,实现多道瞬变电磁法的正演模拟研究.研究工作首先在有源大地电磁法2D有限元模拟的基础上进行,原有2D有限元法的频带相对于多通道瞬变电磁法的频带是窄频的,为此采用校正法将其扩展到所需的宽度,实现了频率域宽频带有源电磁勘探方法的正演模拟;然后通过频时变换变换到时间域,得到瞬变电磁法的阶跃响应;最后通过求取阶跃响应的时间导数,得到大地脉冲响应.针对多通道瞬变电磁方法的装置特点,用有一定埋深的顺层成矿模型分析了大地脉冲响应特征,发现对有一定埋深的顺层产出的矿脉模型来说,频率域电磁场结果以及时间域大地脉冲响应结果均需移除背景场才能突出异常体的存在,然而,在实际工作中,未知的背景场限制了其实用性.为此,本文利用多通道瞬变电磁方法数据量大的特点,提出用不同偏移距的等时曲线与等时断面来展示脉冲响应模拟结果,事实表明这两种展示方式可以清晰地分辨出矿体引起的异常,且能准确定位矿体的中心在地面的投影位置,从而说明多通道瞬变电磁方法相对于频率域有源电磁方法,对有一定埋深的顺层矿床有更高的分辨能力.



关 键 词:2D有限元模拟    多通道瞬变电磁法    高低频校正    等时曲线    等时断面
收稿时间:2017-10-29
修稿时间:2018-10-12

2D FEM modeling on the multi-channel transient electromagnetic method
WANG Ruo,WANG MiaoYue,DI QingYun,XUE GuoQiang.2D FEM modeling on the multi-channel transient electromagnetic method[J].Chinese Journal of Geophysics,2018,61(12):5084-5095.
Authors:WANG Ruo  WANG MiaoYue  DI QingYun  XUE GuoQiang
Institution:1. Key Laboratory of Shale Gas and Geoengineering, Beijing 100029, China; 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 3. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Abstract:The impulse response is studied using 2D finite element method because it is a basis for data interpretation of the multi-channel transient EM method (MTEM). In practice, the impulse response is obtained through cosin transformation from the results in the frequency domain, which are calculated by 2D finite element method (FEM) successfully used in the CSAMT modeling. However, the frequency band used in MTEM is wider than in CSAMT, and the modeling results at higher and lower frequencies deviate from the analytic results. We correct the differences by using far field and near field analytic formulas, and the correction results can be used in the cosin transformation to get the impulse response. In order to test the effect of the MTEM method, we design a three-layer model with a horizontal ore body limited-extending along the strata in the second layer. If one source is used, both in the frequency and time domain, the anomaly caused by the ore body cannot be distinguished clearly except for taking away the background field. However, the background is unknown in the field work; so it is not workable to be take away from the total field. We propose to use the isochronic curve or isochronic section of same offset to show the modeling results. In fact, from the two kinds of figures, not only the anomaly but also the horizontal location of the ore body can be distinguished clearly. It indicates that the MTEM method can distinguish the anomaly more clearly than the frequency method for in-layer deposits buried at some depth.
Keywords:2D FEM modeling  MTEM method  High and low frequency correction  Isochronic curve  Isochronic section
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号