首页 | 本学科首页   官方微博 | 高级检索  
     

2015年尼泊尔M_S8.1地震的地壳重力均衡背景与地表形变响应特征
引用本文:付广裕,高尚华,张国庆,佘雅文,孙和平. 2015年尼泊尔M_S8.1地震的地壳重力均衡背景与地表形变响应特征[J]. 地球物理学报, 2015, 58(6): 1900-1908. DOI: 10.6038/cjg20150606
作者姓名:付广裕  高尚华  张国庆  佘雅文  孙和平
作者单位:1. 中国地震局地震预测重点实验室(中国地震局地震预测研究所), 北京 100036;2. 大地测量与地球动力学国家重点实验室, 武汉 430077
基金项目:国家自然科学基金(41461164004;41331066),国家国际科技合作专项(2105DFR21100),地震预测研究所基本科研业务费专项(2013IES010103),大地测量与地球动力学国家重点实验室开放基金(SKLGED2014-4-3-E)资助.
摘    要:对2015年尼泊尔MS8.1地震的地壳均衡背景及其引起的地表形变特征进行了研究,结果表明:(1)尼泊尔MS8.1地震震中以南的印度板块岩石圈有效弹性厚度大约为9km,加载主要来自地幔;地震以北的拉萨地块岩石圈有效弹性厚度大约为2km,加载主要来自地表.(2)尼泊尔MS8.1地震震中以南地区的地壳均衡异常大约为-100mGal(10-5 m·s-2),但其北部的地壳均衡异常则为300~400mGal,尼泊尔MS8.1地震发生在地壳均衡负异常向正异常过渡的高梯度带上.(3)尼泊尔MS8.1地震使震中周围地区的地壳整体向南运动,最大水平位移超过1.5m,分布在震中东南.震中以北的同震垂向位移总体为负值,最大下降幅度超过0.5m,同震重力变化总体为正值,最大超过60μGal(10-8 m·s-2);震中以南的垂向位移总体为正值,最大升幅超过0.7m,同震重力变化总体为负值,最大降幅超过-120μGal.(4)尼泊尔MS8.1地震使"世界屋脊"喜马拉雅山脉产生沉降,最大同震降幅超过120mm,震后松弛效应将使"世界屋脊"持续缓慢下降.该强震使世界最高峰珠穆朗玛峰降低了2~3mm,有可能被GPS、InSAR等现代大地测量工具检测到.

关 键 词:2015年尼泊尔MS8.1地震  岩石圈有效弹性厚度  EGM2008重力场模型  球体位错理论  喜马拉雅山脉  
收稿时间:2015-05-06

Gravitational isostasy background and surface deformation response characteristics of the 2015 Nepal MS8.1 earthquake
FU Guang-Yu,GAO Shang-Hua,ZHANG Guo-Qing,SHE Ya-Wen,SUN He-Ping. Gravitational isostasy background and surface deformation response characteristics of the 2015 Nepal MS8.1 earthquake[J]. Chinese Journal of Geophysics, 2015, 58(6): 1900-1908. DOI: 10.6038/cjg20150606
Authors:FU Guang-Yu  GAO Shang-Hua  ZHANG Guo-Qing  SHE Ya-Wen  SUN He-Ping
Affiliation:1. Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, CEA, Beijing 100036, China;2. State Key Laboratory of Geodesy and Earth's Dynamics, Wuhan 430077, China
Abstract:We studied the gravitational isostasy background and the surface deformation response characteristics of the 2015 Nepal MS8.1 earthquake. The results showed that: (1) the lithosphere effective elastic thickness of Indian block, an area south to the epicenter of 2015 Nepal MS8.1 earthquake, is about 9 km, and the load comes mainly from the mantle. However, the lithosphere effective elastic thickness of Lhasa block, an area north to the great earthquake, is about 2 km, and the load comes mainly from the tomography. (2) The gravitational isostasy anomalies are about -100 mGal (10-5m·s-2) at area south to the Nepal MS8.1 earthquake, while at area north to the earthquake, the values become 300~400 mGal. The Nepal MS8.1 earthquake occurred at a high gradient belt where the isostasy varies from negative anomalies to positive anomalies. (3) Due to the Nepal MS8.1 earthquake, the earth surface around the epicenter moved southward as a whole. The maximum of the co-seismic horizontal displacements is above 1.5 m, located at the area southeast to the epicenter. At the area north to the epicenter, the co-seismic vertical displacements are negative and the maximum exceeds -0.5 m, the gravity changes are positive and the maximum is above 60 μGal (10-8m·s-2). However, the values at the area south to the epicenter are vice versa. The maximum co-seismic vertical displacements and gravity changes are 0.7 m and -120 μGal respectively. (4) The Nepal MS8.1 earthquake made the roof of the world, the Himalayas, decease as a whole, and the maximum decrease magnitude is more than 120 mm. It is expected the Himalayas will continue to decrease because of the relaxation effects of the mantle. The Nepal MS8.1 earthquake made Mt. Everest decrease about 2~3 mm, which may be detectable by modern measuring tool such as GPS and InSAR.
Keywords:The 2015 Nepal MS8.1 earthquake  The lithosphere effective elastic thickness  EGM2008 gravitational model  Spherical dislocation theory  The Himalayas
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号