首页 | 本学科首页   官方微博 | 高级检索  
     

无网格局部Petrov-Galerkin法大地电磁场二维正演模拟
引用本文:卢杰, 李予国. 2017. 无网格局部Petrov-Galerkin法大地电磁场二维正演模拟. 地球物理学报, 60(3): 1189-1200, doi: 10.6038/cjg20170329
作者姓名:卢杰  李予国
作者单位:1. 中国海洋大学海洋地球科学学院, 青岛 266100; 2. 海底科学与探测技术教育部重点实验室, 青岛 266100
基金项目:国家自然科学重点基金项目(41130420)资助.
摘    要:

有限差分法和有限单元法在大地电磁场数值模拟中已经得到了广泛的应用,但其数值结果的精度在很大程度上依赖于网格的离散程度.当模拟起伏地形、弯曲界面等复杂地电模型大地电磁场响应时,常常需要花费大量的时间以便得到较合理的离散网格.无网格局部Petrov-Galerkin法(MLPG)不同于有限差分法和有限元法,其形函数和权函数脱离了网格的束缚.本文详细推导了二维大地电磁场边值问题的弱式形式,并将其离散为局部积分域内的表达形式.通过模拟二维海洋地电模型大地电磁场响应,并与结构网格有限元结果进行对比,验证了本文算法和程序的正确性及精度.设计了一个含有弯曲界面的二维地电模型,讨论了不同离散网格对MLPG无网格法模拟结果的影响,并与结构有限元法结果进行了比较,结果表明MLPG无网格法模拟结果受离散网格影响较小.最后利用MLPG无网格法计算了两个海洋起伏地形模型的大地电磁响应,讨论了海底起伏地形对大地电磁响应的影响.



关 键 词:大地电磁场   无网格方法   海洋起伏地形
收稿时间:2016-01-05
修稿时间:2016-11-18

Two-dimensional magnetotelluric modeling using the Meshfree Local Petrov-Galerkin method
LU Jie, LI Yu-Guo. 2017. Two-dimensional magnetotelluric modeling using the Meshfree Local Petrov-Galerkin method. Chinese Journal of Geophysics (in Chinese), 60(3): 1189-1200, doi: 10.6038/cjg20170329
Authors:LU Jie  LI Yu-Guo
Affiliation:1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China; 2. Key Lab of Submarine Geosciences and Prospecting Techniques of Ministry of Education, Ocean University of China, Qingdao 266100, China
Abstract:The finite difference method (FDM) and the finite element method (FEM) have been widely used in magnetotelluric (MT) modelling, but their accuracy heavily depends on discretized grids. For a complex model with rough topography or curved interfaces, it might take a lot of time to generate a proper mesh for fitting the topography and the interfaces.A new numerical simulation method, called Meshfree Local Petrov-Galerkin method (MLPG), has been proposed to solve this problem.The shape function and the weight function of MLPG are only related to the distance between nodes.This method, at root, overcomes the drawback of the conventional FDM or FEM method that depends on elements. In this work, we transformed the magnetotelluric boundary value problem into a weak form by using the weighted residual method and obtained its discrete form in a local integral domain. By simulating the MT responses of a 2-D conductivity model and comparing the numerical solutions with those from the structured FEM,we have verified the validity and accuracy of this new algorithm. Numerical examples show that the MLPG method is less affected by a grid than the structured FEM. In terms of the MLPG algorithm, we have simulated MT responses of two marine conductivity models with topography and analyzed the modeling results.
Keywords:Magnetotelluric  Meshfree method  Marine terrain relief
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号