首页 | 本学科首页   官方微博 | 高级检索  
     

各向异性Radon变换及其在多次波压制中的应用
引用本文:巩向博, 韩立国, 李洪建. 各向异性Radon变换及其在多次波压制中的应用[J]. 地球物理学报, 2014, 57(9): 2928-2936, doi: 10.6038/cjg20140918
作者姓名:巩向博  韩立国  李洪建
作者单位:吉林大学地球探测科学与技术学院, 长春 130026
基金项目:国家自然科学基金项目(41204078),中国博士后科学基金(2012M520679),吉林大学青年教师创新项目(450060481201)联合资助.
摘    要:即使采用分辨率很高的双曲Radon变换,对速度各向异性发育介质及长偏移距情况下的地震数据,其Radon域内能量仍不收敛.为了克服此难题,我们在Radon变换的积分路径中考虑了非双曲走时的影响,通过引入非双曲时差公式中的各向异性非椭圆率η参数,可以准确描述出长偏移距条件下来自同一层位的时距曲线,并推导了由偏移距、慢度、非椭圆率三参数控制的积分曲线正反变换公式,我们称之为各向异性Radon变换.离散化求解时,各向异性Radon变换是时变的,频率域快速算法已不适用,本文采用了最优相似系数加权Gauss-Seidel迭代算法,保持其计算精度的同时也有较高的计算效率.将此方法应用在模型数据以及实际长偏移距海上地震数据的多次波压制处理中,收到了较好的处理效果.

关 键 词:各向异性   Radon变换   长偏移距   多次波压制
收稿时间:2014-01-02
修稿时间:2014-07-31

Anisotropic Radon transform and its application to demultiple
GONG Xiang-Bo, HAN Li-Guo, LI Hong-Jian. Anisotropic Radon transform and its application to demultiple[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(9): 2928-2936, doi: 10.6038/cjg20140918
Authors:GONG Xiang-Bo  HAN Li-Guo  LI Hong-Jian
Affiliation:Geo-Exploration Science and Technology Institute, Jilin University, Changchun 130026, China
Abstract:For the seismic data acquired in the anisotropic medium and with large offset, although we use the high-resolution hyperbolic Radon transform, the energy of the Radon domain is still not convergent. In order to overcome this problem, the influence of the anisotropic factor is considered in the integral path of Radon transform. By introducing the anisotropic anellipticity parameters η from non-hyperbolic moveout formula, the travel-time curve can be accurately described in the horizontal layer for large offset. We derive the integral equation of forward and inverse Radon transform with three parameters, which are the offset, the slowness and the anellipticity. For time-varying of anisotropic Radon transform, the fast algorithm in the frequency domain is not applicable in the process of discretization. This paper adopt the optimal semblance weighted Gauss-Seidel iterative algorithm which not only keeps the high resolution but also has the high calculation efficiency. In the examples of the anisotropic model and real marine seismic data with large offset, this method shows the effective and efficient application to demultiple.
Keywords:Anisotropy  Radon transform  Large offset  Demultiple
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号