首页 | 本学科首页   官方微博 | 高级检索  
     

基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构
引用本文:贺鹏超, 王敏, 王琪, 沈正康. 2018. 基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构. 地球物理学报, 61(2): 531-544, doi: 10.6038/cjg2018L0189
作者姓名:贺鹏超  王敏  王琪  沈正康
作者单位:1. 北京大学地球与空间科学学院地球物理系, 北京 100871; 2. 中国地震局地质研究所, 地震动力学国家重点实验室, 北京 100029; 3. 中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074; 4. 美国加州大学洛杉矶分校地球与空间科学系, CA 90095-1567, USA
基金项目:国家自然科学基金项目(40334042和41474028)资助.
摘    要:

青藏高原岩石圈的流变学结构和形变机制是地学界长期争论的重大科学问题.2001年发生在东昆仑断裂带的MW7.8可可西里地震造成青藏高原北部地区岩石圈构造应力场的很大改变,引起下地壳与上地幔的快速弛豫形变,从而为研究这一问题提供了难得的机会.本研究采用该区域的GPS震后观测,反演这一地区岩石圈的流变学参数并探讨其形变机制.反演所采用的数据来自45个GPS观测点,其中包括一个中国地壳运动观测网络的基准站,数据最长时间跨度达6.4年.大地震震后形变场主要来源于地壳、上地幔的黏弹性松弛与断层面上的震后余滑,因此本研究同时反演介质的黏滞系数和断层的震后余滑.考虑到东昆仑断层南侧的巴颜喀拉-羌塘地区与北侧的柴达木盆地地区具有明显不同的地壳结构,断层南北两侧采用不同的Burgers体流变学结构,其下地壳-上地幔的短期和长期黏滞系数采用网格搜索法获得;断层震后余滑反演则同时施加近似正比于库仑应力的约束.最终结果显示:东昆仑断层北侧柴达木盆地地区下地壳-上地幔短期和长期黏滞系数分别为5×1018 Pa·s和1.5×1020 Pa·s;东昆仑断层南侧巴颜喀拉-羌塘地区下地壳-上地幔短期和长期黏滞系数分别为1.5×1018 Pa·s和1.5×1019 Pa·s.这一结果表明:巴颜喀拉-羌塘地区下地壳-上地幔黏滞系数显著低于柴达木盆地,意味着巴颜喀拉-羌塘地区下地壳可能存在部分熔融,其地壳形变模式更趋近于连续形变,而柴达木盆地形变模式更趋近于块体运动.研究区下地壳长期黏滞系数比下地壳流模型所主张的黏滞系数高2~3个数量级,表明下地壳流在本地区可能不存在.



关 键 词:可可西里地震   GPS观测   震后形变   流变学结构   下地壳流
收稿时间:2017-05-11
修稿时间:2017-06-04

Rheological structure of lithosphere in northern Tibet inferred from postseismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake
HE PengChao, WANG Min, WANG Qi, SHEN ZhengKang. 2018. Rheological structure of lithosphere in northern Tibet inferred from postseismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake. Chinese Journal of Geophysics (in Chinese), 61(2): 531-544, doi: 10.6038/cjg2018L0189
Authors:HE PengChao  WANG Min  WANG Qi  SHEN ZhengKang
Affiliation:1. Department of Geophysics, School of Earth and Space Science, Peking University, Beijing 100871, China; 2. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; 3. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China; 4. Department of Earth and Space Sciences, University of California, Los Angeles, California, 90095-1567, USA
Abstract:The rheological structure of lithosphere in northern Tibet has been debated for decades. The 2001 MW7.8 Kokoxili earthquake greatly changed the tectonic stress field in this area, providing an opportunity to address this issue by modeling the postseismic deformation at the Earth's surface. We collect GPS data observed after the quake, and use it to invert lithosphere rheological parameters and infer deformation mechanism in northern Tibet. GPS data from 45 sites, including one reference station from the Crustal Motion Observation Network of China, are processed to produce the time series. Data acquired after the 2001 Kokoxili earthquake and prior to the 2008 Yutian earthquake are used in the study, and most of the GPS sites are located in the near to mid field, and with at most 6.4 years of observation history. We perform a joint inversion to solve for the viscous relaxation in lithosphere and afterslip on the fault simultaneously. The Bayan Har-Qiangtang region and Qaidam Basin, located south and north of the east Kunlun fault, respectively, are assumed to have different rheological structures in the lithosphere, and viscosities of lower crust and upper mantle on each side are assumed to be the same and the values are inverted through grid search. Afterslip is constrained by both observations and the Coulomb stress distribution on the fault. Our results show the secular viscosities of 1.5×1019 Pa·s and 1.5×1020 Pa·s of lower crust/upper mantle for south and north of the fault respectively. The transient viscosities of 1.5×1018 Pa·s and 5×1018 Pa·s are also found respectively. These results reveal that viscosity of lower crust/upper mantle beneath the Bayan Har-Qiangtang region is much lower than that below the Qaidam Basin, implying possible partial melt in the lower crust of the Bayan Har-Qiangtang region. The deformation pattern in the Bayan Har-Qiangtang region agrees well with the distributed deformation model, while that of the Qaidam basin is more consistent with the block deformation model. Viscosity of lower crust in northern Tibet is 2~3 orders of magnitude higher than what the lower crustal flow model requires, suggesting that lower crustal flow likely does not exist in this region.
Keywords:Kokoxili earthquake  GPS data  Postseismic deformation  Rheologic structure  Lower crustal flow
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号