首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stable isotope evidence for regional-scale fluid migration in a Barrovian metamorphic terrane,Vermont, USA
Authors:Libby A Stern  C Page Chamberlain  Daniel E Barnett  John M Ferry
Institution:(1) Department of Earth Sciences, Dartmouth College, 03755 Hanover, NH, USA;(2) Department of Geology and Geophysics, University of Utah, 84112 Salt Lake City, UT, USA;(3) Department of Earth and Planetary Sciences, The Johns Hopkins University, 21218 Baltimore, MD, USA
Abstract:We measured the C- and O-isotopic composition of carbonate minerals in the Waits River Formation, eastern Vermont, to determine the extent of fluid infiltration during regional metamorphism over an approx. 2000 km2 area in a deep-seated (>25 km) Barrovian terrane. From a petrologic study of this terrane, Ferry proposed the existence of a large regional metamorphic hydrothermal system with two first-order features: (1) on the scale of the entire terrane fluid flow was focused into the axes of two major antiforms of regional extent; (2) on a smaller scale (about 100 km2) flow was further focused around synmetamorphic granitic plutons that intruded along the axes of the antiforms. We find isotopic evidence for both the regional hydrothermal activity along the antiforms and the more intense fluid flow around synmetamorphic plutons. The evidence for hydrothermal activity around the plutons is large heavy isotope depletions, up to 6–9permil in delta18Ocarb and delta13Ccarb, in diopside zone rocks adjacent to the plutons. These isotopic shifts are greater than can be explained solely by prograde metamorphic reactions. We find two lines of evidence for the more diffuse regional flow that was focused into axes of the antiforms. First, delta18Ocarb and delta13Ccarb, within individual outcrops become increasingly homogeneous with increasing grade towards antiform axes, indicating that the rocks equilibrated with a permeating fluid. Second, there are depletions in 18O near the margins of the Waits River Formation which can be interpreted as a dispersed, advective infiltration front displaced toward the antiform axes. These fronts were modelled using Eq. 13 of Bickle and Baker and imply time-integrated fluid of 105–106 cm3/cm2, which are consistent with values derived by Ferry from measured progress of prograde devolatilization reactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号