首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Displacement capacity of masonry piers: parametric numerical analyses versus international building codes
Authors:Maurizio Orlando  Luca Salvatori  Paolo Spinelli  Mario De Stefano
Institution:1.DICEA,University of Florence,Florence,Italy;2.DIDA,University of Florence,Florence,Italy
Abstract:The nonlinear behaviour of masonry piers loaded in their plane is investigated by parametric numerical simulations. Each pier has a cantilever scheme, is loaded by a constant axial load and is subjected to an increasing horizontal displacement at the top. The macro-modelling approach is used to perform numerical analyses, adopting two different constitutive laws: a total strain crack model and a plastic model. The numerical model is calibrated on a block-masonry type for which experimental tests are available in literature. Parametric numerical simulations are performed by varying the aspect-ratio and the compression level, in order to assess the influence of such parameters on both shear strength and displacement capacity. By comparing numerical results with formulas of international codes, a good agreement for the shear strength is obtained, while significant differences are observed for the displacement capacity, which is influenced by both parameters. The authors propose a simple empirical formula for the displacement capacity, obtained by fitting the numerical results. The expression can be useful in the practical design for considering the influence of aspect-ratio and compression level, currently neglected by building codes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号