首页 | 本学科首页   官方微博 | 高级检索  
     


Seismic response of multi-frame bridges
Authors:Masoud Mehr  Arash E. Zaghi
Affiliation:1.Division of Structures,WSP | Parsons Brinckerhoff,Glastonbury,USA;2.Department of Civil and Environmental Engineering,University of Connecticut,Storrs,USA
Abstract:Long cast-in-place concrete bridges are often constructed in multiple frames separated by in-span hinges. The multi-frame system offers lower construction and maintenance costs, fewer adverse effects due to creep, post-tensioning, and thermal deformations as a few of its advantages. However, the seismic response of multi-frame bridges has been uncertain owing to the complexities of their discrete system. This study intends to improve the understanding of the seismic response of multi-frame bridge systems and evaluate the applicability of current design assumptions. Responses of multi-frame bridges and comparable single-frame bridges of the same length are compared. Seismic demands on multi-frame bridge columns, abutments, and in-span hinges were investigated through high-fidelity analytical simulations. Approximately 3400 nonlinear time history analyses of prototype bridges with realistic designs were performed using the OpenSees platform. Analysis of variance was implemented along with a factorial design to study the effect of several independent factors, including the number of frames, substructure system, unequal column heights, soil type, ground motion intensity, and capacity-to-demand ratio. It was observed for elastic dynamic analysis that a 90 % modal mass participation ratio is not adequate to accurately estimate dynamic responses. Seismic demands on columns in multi-frame bridges are typically smaller than those in comparable single-frame bridges. The multi-frame system is seismically more robust than the single-frame system, specifically for bridges spanning non-uniform valleys that include unequal column heights. To prevent longitudinal unseating at in-span hinges, it is critical to consider the interaction of transverse and longitudinal responses. The seismic damage to abutment backwalls and backfills in multi-frame bridges is expected to be extensive owing to small expansion joints.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号