首页 | 本学科首页   官方微博 | 高级检索  
     

基于S-域的空间关联规则挖掘研究
引用本文:杨晓梅,蓝荣钦,杨松. 基于S-域的空间关联规则挖掘研究[J]. 测绘学院学报, 2007, 0(1)
作者姓名:杨晓梅  蓝荣钦  杨松
作者单位:中国科学院资源与环境信息系统国家重点实验室 北京100101(杨晓梅),信息工程大学测绘学院 河南郑州450052(蓝荣钦),郑州市市政勘测设计研究院 河南郑州450052(杨松)
基金项目:国家973项目(2006CB701305)资助,国家863项目(2006AA12Z146)资助
摘    要:概括了空间关联规则挖掘的发展现状,引入空间共生域的概念,给出了相关论证,设计了详细的算法步骤。利用该方法可以分割地理连续体、实现数据的离散化处理,由此构造的空间数据库可以应用传统的Apriori算法。同时,针对共生域的异质性问题,给出了障碍距离的模糊隶属度公式。最后,结合应用实际进行挖掘,结果表明该方法适合于发现具有因果关系的空间实体之间的关联性知识。

关 键 词:空间关联规则  共生域  模糊隶属度

Spatial Association Rules Mining Based on Symbiosis Neighborhood
YANG Xiao-mei,LAN Rong-qin,YANG Song. Spatial Association Rules Mining Based on Symbiosis Neighborhood[J]. Journal of Institute of Surveying and Mapping, 2007, 0(1)
Authors:YANG Xiao-mei  LAN Rong-qin  YANG Song
Affiliation:YANG Xiao-mei1,LAN Rong-qin2,YANG Song3
Abstract:This paper firstly outlined the developing status of spatial association rule mining,then proposed a new concept called spatial symbiosis neighborhood,and proved the relative definitions.We designed the detailed algorithm and procedure.This method could be used to partition geographical continua and realize discrete processing of geographical data,and the constructed database could be mined by using the classical Apriori-algorithm.Also,in view of the heterogeneity of spatial distribution,we brought forth the fuzzy membership along obstacle path. Finally,by applying our method to practices,the result proved that this method was fit for finding the association knowledge among spatial objects with casual-effect relationship.
Keywords:spatial association rule  symbiosis neighborhood  fuzzy membership
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号