首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen budget of the eelgrass, Zostera marina in a bay system on the south coast of Korea
Authors:Sang Rul Park  Young Kyun Kim  Seung Hyeon Kim  Kun-Seop Lee
Institution:1. Department of Marine Life Sciences, College of Ocean Sciences, Jeju National University, Jeju, 690-756, Korea
2. Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Korea
Abstract:Above- and below-ground productivities and tissue N content were measured monthly to quantify N incorporation to sustain eelgrass growth in Koje Bay on the south coast of Korea from January to December 2002. N acquisition was also estimated through measurements of N uptake kinetics, tissue biomass, and in situ inorganic N concentrations in water column and sediments. Above- and below-ground productivities were highest in summer and lowest in late fall and winter. Leaf tissue N content was highest in December and lowest in July, while rhizome tissue N content was highest in October and lowest in April. Estimated monthly N incorporation by leaf tissues based on the leaf productivity and N content ranged from 0.4 g N m?2 month?1 in November to 2.0 g N m?2 month?1 in May. N incorporation by below-ground tissues ranged from 0.1 g N m?2 month?1 in February to 0.2 g N m?2 month?1 in October. Annual whole plant N incorporation was 14.5 g N m?2 y?1, and N incorporation by leaf tissues accounted for about 87 % of total N incorporation. Maximum uptake rate (V max ) and half saturation constant (K m ) of leaf NH4 + uptake were significantly lower than those of root NH4 + uptake. Above- and below-ground biomass ranged from 20.8 g DW m?2 and 8.6 g DW m?2 in winter to 350.0 g DW m?2 and 81.3 g DW m?2 in spring, respectively. NH4 + concentrations varied from 0.2 to 4.3 mM in water column and from 93.0 to 551.7 mM in sediment pore water. Based on these measurements, annual N acquisition by root tissues contributed slightly higher than that by leaf tissues to total plant N acquisition. During winter, monthly leaf N acquisition was lower than monthly leaf N incorporation. This implies that Z. marina has internal nitrogen retention system to offset the shortage and excess of nitrogen.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号