首页 | 本学科首页   官方微博 | 高级检索  
     


Biogeochemical characterization of a Mediterranean shallow lake using stable isotopes: Laguna del Cristo (NW Iberian Peninsula)
Authors:Margarita Jambrina-Enríquez  Clemente Recio  Ildefonso Armenteros
Affiliation:1.Facultad de Ciencias,Universidad de Salamanca,Salamanca,Spain;2.Archaeological Micromorphology and Biomarkers (AMBI Lab),Instituto Universitario de Bio-Orgánica Antonio González,La Laguna, Tenerife,Spain
Abstract:The present multi-isotopic study (δ18O–δDwater, δ34S–δ18Odissolved-sulphate, δ13Cdissolved-inorganic-carbon, δ13C–δ18Oshells-modern-gastropods, δ13Cplants, and δ13Csedimentary-organic-matter) is aimed at assessing the hydrogeochemical changes and biogeochemical dynamics in a Mediterranean shallow lake fed by a Quaternary–Tertiary aquifer, the “Laguna del Cristo” (NW Iberian Peninsula), a system sensitive to climate fluctuations, between 2010 and 2011. Lake water is of the bicarbonate type, and there are no major pollutants. δ18O-δDwater values plot on a local evaporation line (δD=5.29δ18O–12.29) indicating that evaporative enrichment had a significant impact on lake water isotopic features. Periods of high water levels are characterized by lower δ34S–δ18Odissolved-sulphate and δ13Cdissolved-inorganic-carbon values and suggest sulphate derived from weathering of sulphides in the catchment area, delivered to the lake by surface run-off or via groundwater, and in situ decay of organic matter. During lower water levels, sulphate reduction and enhanced primary productivity lead to higher δ34Sdissolved-sulphate and δ13Cdissolved-inorganic-carbon values. Evaporation induced enrichment in 18Osulphate, 13Cdissolved-inorganic-carbon and 13C–18Oshells-Galba-Gyraulus. δ13Cplant confirms the C3 photosynthetic pathway. Enrichment in 13C submerged aquatic plants indicates that HCO3? is the main carbon source, except for 13C-depleted Potamogeton. The TOC, δ13Corg values, and TC/TN ratios in sediments all confirm the autochthonous character of organic matter contribution. This study provides a baseline for isotopic research into shallow, flow-through lakes fed by siliciclastic aquifers, and stresses the importance of evaporation and refilling (direct precipitation and groundwater discharge) in controlling the solute chemistry and stable isotopic composition in temperate regions with contrasting seasonal climates. The results also provide a snapshot of modern lake isotope variability that can be applied to paleoenvironmental reconstructions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号