首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal expansion of granitoids
Authors:Siegfried Siegesmund  Luís Sousa  Christian Knell
Institution:1.Geoscience Centre,University G?ttingen,G?ttingen,Germany;2.Department Geology,University of Trás-os-Montes e Alto Douro,Vila Real,Portugal;3.CEMMPRE Research Centre,Coimbra,Portugal
Abstract:The thermal rock properties are particularly important for natural stones whenever a temperature change may occur, which becomes particularly important when different materials are combined on any architectural structure. The thermal expansion of a rock is dependent on the coefficients of the expansion of the individual rock-forming minerals and the rock fabric. A systematic study on 65 different stones, mostly granitoids and others magmatic rocks, most of them are often used as dimensional building stones, was performed. Temperature and moisture are very important parameters in the natural environment. Therefore, the thermal expansion, and in addition the thermohygric expansion on selected examples, was measured. The data were also discussed considering the effect of the mineralogy and the temperature. A modeling approach was introduced to show how the mineralogy and the related single crystal properties affect the thermal properties and how good a simple calculation can help to characterize the measured thermal expansion of a rock. The directional dependence of the thermal expansion was also discussed and explained based on detailed rock fabric measurements. In this study, the bowing of granitoid samples was tested and compared with bowing phenomena of granitoid facade panels. The slabs were cut in different directions and were studied under different conditions of temperatures and water saturation. It could be clearly documented that the temperature and the moisture have a control on the bowing behavior. The implication of our data is that thermal expansion depends greatly on wetting and drying, i.e., the thermal cracking is characterized by the residual strain observed after cooling to room temperature. The sensitivity to the thermal cracking has a significant control on the application in architectural constructions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号