首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study on the effects of crustal temperature and composition on assimilation with fractional crystallization at the floor of magma chambers
Institution:1. Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan;2. Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan;1. School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia;2. School of Earth, Atmosphere & Environment, Monash University, Clayton VIC, Australia
Abstract:When a hot basaltic magma is emplaced into continental crust or a pre-existing silicic magma chamber, the processes of assimilation with fractional crystallization (AFC) are likely to control the liquid line of descent of the magma. These processes are particularly important at the floor of the magma chamber because evolved light liquids generated by floor melting readily mix with the overlying basaltic magma. In order to clarify the effects of temperature and composition of the floor on the AFC processes, we experimentally investigated simultaneous melting and crystallization of a NH4Cl–H2O binary eutectic system. In the experiments, evolution of temperature and compositional profiles of a hot solution overlying a cold solid mixture of variable initial temperatures and compositions were measured. The initial NH4Cl concentrations of solid and liquid are chosen to be higher than the eutectic composition, such that the density change of the experimental material by crystallization and melting is qualitatively the same as that of natural magmas and crusts. The results show that a mushy layer forms at the floor due to simultaneous crystallization and (partial) melting and that the liquid evolves due to mixing with liquids released by crystallization and melting. The ratio of melting mass to crystallization mass (M/C ratio) depends on the initial floor temperature and composition. As the initial floor temperature decreases, the rate of melting largely decreases, so that the M/C ratio becomes smaller. As the initial NH4Cl concentration of the solid floor decreases, the degree of partial melting of the floor increases; however, it does not necessarily result in an increase in the M/C ratio. The higher melt fraction of the mushy layer increases permeability within the mushy layer, so that vertical exchange between the liquid in the mushy layer and the more concentrated overlying liquid is enhanced. This effect promotes crystallization in the mushy layer, and decreases the M/C ratio. It is suggested that the M/C ratio during AFC processes depends on details of the mixing process in the liquid layer such as spacing and meandering of buoyant plumes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号