首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental modelling of corona textures
Authors:T L LARIKOVA  G P ZARAISKY
Institution:Institute of Ore Deposits, Petrography, Mineralogy, and Geochemistry of Russian Academy of Sciences (IGEM RAS), Staromonetny, 35, Moscow 119017, Russia ();
Institute of Experimental Mineralogy (IEM) RAS, Chernogolovka, Russia
Abstract:Formation of corona textures along olivine–plagioclase and orthopyroxene–plagioclase interfaces has been experimentally reproduced at 670 and 700 °C and 5 kbar with either a pure H2O fluid phase or 0.1 and 37 m NaCl–H2O solution fluid. In these experiments, we investigate the interaction of primary olivine and/or orthopyroxene and plagioclase in powders and polished crystals, and in small samples of a natural gabbro. The experiments result in the formation of corona textures with several layers of different assemblages (according to the experimental conditions) consisting of garnet (grossular), clinopyroxene, orthopyroxene, amphibole, chlorite and phlogopite. The experiments show major differences in the number of layers, the mineral assemblages and mineral composition, and in the trends of composition of plagioclase in coronas around olivine and orthopyroxene. The fluid phase composition influences the corona assemblages and the composition of the minerals in the experimental coronas; for example, garnet appears in the coronas in the second experiment where the NaCl–H2O ratio is low. Experimental modelling of corona textures confirms a model of simultaneous growth of layers by the mechanism of diffusion metasomatism with participation of a fluid phase through which mass is transferred. Zoning in the experimental coronas shows opposing diffusion of Al and Ca from plagioclase and Mg and Fe from olivine/orthopyroxene; difference in the mobility of the components is inferred from observations in the coronas. The experimental corona textures are compared with natural coronas from the Belomorian belt (Baltic shield), developed at 670–690 °C and 7–8 kbar, and the Marun‐Keu complex (Polar Urals), developed at 670–700 °C and 14–16 kbar, where the corona textures correspond to a transitional stage of the gabbro‐to‐eclogite transformation.
Keywords:corona texture  diffusion  eclogite  experiment  metagabbro
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号