Morphologic adjustments of actively evolving highly curved neck cutoffs |
| |
Authors: | Derek Richards Kory Konsoer |
| |
Affiliation: | Department of Geography and Anthropology, Louisiana State University, 227 Howe-Russell-Kniffin Geoscience Complex, Baton Rouge, LA, 70803 USA |
| |
Abstract: | Neck cutoffs and their resultant oxbow lakes are important and prominent features of riverine landscapes. Detailed field-based research focusing on the morphologic evolution of neck cutoffs is currently insufficient to fully characterize cutoff evolution. High-resolution bathymetric data were collected over 3 years for the purpose of determining channel morphology and morphologic change on three actively evolving neck cutoffs. Results indicate the following general trends in morphologic adjustment: (1) a longitudinal bar in the upstream meander limb that develops near the entrance to the abandoned bend; (2) a deep scour hole in the downstream meander limb immediately downstream of the cutoff channel; (3) erosion of the bank opposite the cutoff in the downstream meander limb; (4) a cutoff bar in the downstream meander limb at the junction corner of the cutoff channel and the downstream meander limb; and (5) perching of the exit of the abandoned bend above the cutoff channel due to channel bed incision. The results presented herein were used to develop a conceptual model that depicts the morphologic evolution of highly curving neck cutoffs. The findings of this research are combined with recent analyses of the three-dimensional flow structure through neck cutoffs to provide a mechanistic explanation for the morphodynamics of neck cutoffs. © 2019 John Wiley & Sons, Ltd. |
| |
Keywords: | neck cutoffs meandering rivers channel morphology difference mapping |
|