Complex Rays and Wave Packets for Decaying Signals in Inhomogeneous,Anisotropic and Anelastic Media |
| |
Authors: | Thomson C.J. |
| |
Affiliation: | 1.Department of Geological Sciences,Queen's University,Kingston,Canada |
| |
Abstract: | Diffraction and anelasticity problems involving decaying, “evanescent” or “inhomogeneous” waves can be studied and modelled using the notion of “complex rays”. The wavefront or “eikonal” equation for such waves is in general complex and leads to rays in complex position-slowness space. Initial conditions must be specified in that domain: for example, even for a wave originating in a perfectly elastic region, the ray to a real receiver in a neighbouring anelastic region generally departs from a complex point on the initial-values surface. Complex ray theory is the formal extension of the usual Hamilton equations to complex domains. Liouville's phase-space-incompressibility theorem and Fermat's stationary-time principle are formally unchanged. However, an infinity of paths exists between two fixed points in complex space all of which give the same final slowness, travel time, amplitude, etc. This does not contradict the fact that for a given receiver position there is a unique point on the initial-values surface from which this infinite complex ray family emanates.In perfectly elastic media complex rays are associated with, for example, evanescent waves in the shadow of a caustic. More generally, caustics in anelastic media may lie just outside the real coordinate subspace and one must trace complex rays around the complex caustic in order to obtain accurate waveforms nearby or the turning waves at greater distances into the lit region. The complex extension of the Maslov method for computing such waveforms is described. It uses the complex extension of the Legendre transformation and the extra freedom of complex rays makes pseudocaustics avoidable. There is no need to introduce a Maslov/KMAH index to account for caustics in the geometrical ray approximation, the complex amplitude being generally continuous. Other singular ray problems, such as the strong coupling around acoustic axes in anisotropic media, may also be addressed using complex rays.Complex rays are insightful and practical for simple models (e.g. homogeneous layers). For more complicated numerical work, though, it would be desirable to confine attention to real position coordinates. Furthermore, anelasticity implies dispersion so that complex rays are generally frequency dependent. The concept of group velocity as the velocity of a spatial or temporal maximum of a narrow-band wave packet does lead to real ray/Hamilton equations. However, envelope-maximum tracking does not itself yield enough information to compute synthetic seismogramsFor anelasticity which is weak in certain precise senses, one can set up a theory of real, dispersive wave-packet tracking suitable for synthetic seismogram calculations in linearly visco-elastic media. The seismologically-accepiable constant-Q rheology of Liu et al. (1976), for example, satisfies the requirements of this wave-packet theory, which is adapted from electromagnetics and presented as a reasonable physical and mathematical basis for ray modelling in inhomogeneous, anisotropic, anelastic media. Dispersion means that one may need to do more work than for elastic media. However, one can envisage perturbation analyses based on the ray theory presented here, as well as extensions like Maslov's which are based on the Hamiltonian properties. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|