首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Parker Problem and the Theory of Coronal Heating
Authors:I J D Craig  A D Sneyd
Institution:(1) University of Waikato, Private Bag 3105, Hamilton, New Zealand
Abstract:To illustrate his theory of coronal heating, Parker initially considers the problem of disturbing a homogeneous vertical magnetic field that is line-tied across two infinite horizontal surfaces. It is argued that, in the absence of resistive effects, any perturbed equilibrium must be independent of z. As a result random footpoint perturbations give rise to magnetic singularities, which generate strong Ohmic heating in the case of resistive plasmas. More recently these ideas have been formalized in terms of a magneto-static theorem but no formal proof has been provided. In this paper we investigate the Parker hypothesis by formulating the problem in terms of the fluid displacement. We find that, contrary to Parker's assertion, well-defined solutions for arbitrary compressibility can be constructed which possess non-trivial z-dependence. In particular, an analytic treatment shows that small-amplitude Fourier disturbances violate the symmetry ∂z = 0 for both compact and non-compact regions of the (x, y) plane. Magnetic relaxation experiments at various levels of gas pressure confirm the existence and stability of the Fourier mode solutions. More general footpoint displacements that include appreciable shear and twist are also shown to relax to well-defined non-singular equilibria. The implications for Parker's theory of coronal heating are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号