首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation and preliminary analysis of typhoon waves during three typhoons in the Yellow Sea and East China Sea
Abstract:In this study, typhoon waves generated during three typhoons(Damrey(1210), Fung-wong(1416), and Chan-hom(1509)) in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN) model, and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model. Various parameters, such as the Holland fitting parameter(B) and the maximum wind radius(R), were investigated in sensitivity experiments in the Holland model that affect the wind field construction. Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements. The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied, including wind input, whitecapping, and bottom friction. Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation) and the JONSWAP scheme(dissipation of bottom friction) resulted in good reproduction of the significant wave height of typhoon waves. A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon, while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves. The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号