首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Stokes and Vening-Meinesz functionals in a moving tangent space
Authors:Erik W Grafarend  Friedhelm Krumm
Institution:(1) Department of Geodetic Science, University of Stuttgart, Keplerstr. 11, D-70174 Stuttgart, Germany
Abstract:The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S 1(Lambda0, PHgr0, Lambda, PHgr) ofBox 0.1 (R = R 0) andV 1(Lambda0, PHgr0, Lambda, PHgr) ofBox 0.2 (R = R 0) which depend on theevaluation point {Lambda0, PHgr0} isin S R0 2 and thesampling point {Lambda, PHgr} isin S R0 2 ofgravity anomalies Delta gamma (Lambda, PHgr) with respect to a normal gravitational field of typegm/R (rdquofree air anomalyrdquo). If the evaluation point is taken as the meta-north pole of theStokes reference sphere S R0 2 , theStokes function, and theVening-Meinesz function, respectively, takes the formS(PSgr) ofBox 0.1, andV 2(PSgr) ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, PSgr} ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {Lambda, PHgr} onto the tangent plane T0S R0 2 at {Lambda0, PHgr0} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S 2(PSgr),S 3(r),ctdot,S 6(r) as well as the correspondingStokes-Helmert functions H 2(PSgr),H 3(r),ctdot,H 6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V 2(PSgr),V 3(r),ctdot,V 6(r) as well as the correspondingVening-Meinesz-Helmert functions Q 2(PSgr),Q 3(r),ctdot,Q 6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS 2(PSgr) – (sin PSgr/2)–1,S 3(r) – (sinr/2R 0)–1,ctdot,S 6(r) – 2R 0/r andV 2(PSgr) + (cos PSgr/2)/2(sin2 PSgr/2),V 3(r) + (cosr/2R 0)/2(sin2 r/2R 0),ctdot, 
$$V_6 (r) + {{(R_0 \sqrt {4R_0^2  - r^2 } )} \mathord{\left/ {\vphantom {{(R_0 \sqrt {4R_0^2  - r^2 } )} {r^2 }}} \right. \kern-\nulldelimiterspace} {r^2 }}$$
illustrate the systematic errors in therdquoflatrdquo Stokes function 2/PSgr or rdquoflatrdquoVening-Meinesz function –2/PSgr2. The newly derivedStokes functions S 3(r),ctdot,S 6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV 3(r),ctdot,V 6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type rdquoequidistantrdquo, rdquoconformalrdquo and rdquoequiarealrdquo.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号