首页 | 本学科首页   官方微博 | 高级检索  
     


Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
Authors:Susana M. Barbosa
Affiliation:CSIG, INESC TEC, Porto, Portugal
Abstract:Satellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997–1998 El Niño–Southern Oscillation (ENSO) event.
Keywords:Mean sea level  satellite altimetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号