首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low temperature,low pressure deformation and metamorphism of the Vangorda massive sulphide orebody,Yukon, Canada
Authors:D Brown
Institution:(1) Department of Geology, Royal Holloway, University of London, TW20 OEX Egham, Surrey, UK;(2) Present address: CSIC, Instituto de Ciencias de la Tierra ldquoJaume Aimerardquo, Marti i Franquès s/n, 08028 Barcelona, Spain
Abstract:The Vangorda orebody is a small stratiform massive sulphide orebody located in Anvil District, Yukon, Canada. The orebody consists of fineto medium-grained semi-massive and massive sulphides with a common sulphide mineralogy of pyrite, pyrrhotite, sphalerite, galena, and minor chalcopyrite. The host rocks and the sulphide lithofacies have been complexly deformed during two phases of deformation (D1 and D2) and associated metamorphism (M1 and M2). The effects of d1 and M1 are penetratively overprinted by D2 and M2. D2 and M2 resulted in tight to isoclinal F2 folding of the orebody, remobilisation of the sulphides, recrystallisation and development of shear zones along the limbs of the F2 folds. Chlorite thermometry and sulphide thermobarometry have been carried out on the host phyllites and on the sulphides. Chlorite was analysed from the S1 and S2 foliations in the phyllites to determine M1 and M2 temperatures, respectively. However, no difference was found between chlorite compositions in these foliations and a mean temperature of 363 °C was calculated from the tetrahedral A1IV occupancy. Arsenopyrite thermometry yielded a comparable mean temperature of 336 °C. Sphalerite inclusions in M2 pyrite porphyroblasts from D2 shear zones were analysed for pressure using the sphalerite + hexagonal pyrrhotite + pyrite barometer. Inclusions were analysed in an attempt to determine if relic m1 sphalerite, and hence pressure signature, was preserved. Inclusion compositions appear to reflect only M2 conditions and yielded a mean pressure of 4.0 kb. Sphalerite + hexagonal pyrrhotite assemblages were analysed from D2 shear zones to determine the M2 pressure using the sphalerite + hexagonal pyrrhotite barometer. These calculations yielded a mean pressure of 6.1 kb. The M2 temperatures and pressures calculated using these calibrations are in good agreement with those estimated from petrogenetic relationships.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号