首页 | 本学科首页   官方微博 | 高级检索  
     

一次东北冷涡云降水垂直结构特征分析
引用本文:张晋广,赵姝慧,刘旸,孙丽,单楠,张铁凝,张梦佳. 一次东北冷涡云降水垂直结构特征分析[J]. 气象与环境学报, 2021, 37(4): 1-8. DOI: 10.3969/j.issn.1673-503X.2021.04.001
作者姓名:张晋广  赵姝慧  刘旸  孙丽  单楠  张铁凝  张梦佳
作者单位:辽宁省人工影响天气办公室,辽宁 沈阳110166
基金项目:辽宁省科学技术计划项目农业攻关及产业化指导计划(2019JH2/10200019);国家重点研发计划(2018YFC1507900);辽宁省自然基金指导计划项目(2019-ZD-0856)
摘    要:利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12—13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制.结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡....

关 键 词:东北冷涡  云降水垂直结构  毫米波云雷达  微雨雷达
收稿时间:2021-05-20

Observations and analysis of vertical structure of cloud and precipitation caused by a cold vortex in Northeast China
Jin-guang ZHANG,Shu-hui ZHAO,Yang LIU,Li SUN,Nan SHAN,Tie-ning ZHANG,Meng-jia ZHANG. Observations and analysis of vertical structure of cloud and precipitation caused by a cold vortex in Northeast China[J]. Journal of Meteorology and Environment, 2021, 37(4): 1-8. DOI: 10.3969/j.issn.1673-503X.2021.04.001
Authors:Jin-guang ZHANG  Shu-hui ZHAO  Yang LIU  Li SUN  Nan SHAN  Tie-ning ZHANG  Meng-jia ZHANG
Affiliation:Liaoning Weather Modification Center, Shenyang 110166, China
Abstract:Based on the data observed from a millimeter wavelength cloud radar (8 mm) and a micro rain radar (12.5 mm) at Fuxin national weather station (121.7458°E, 42.0672°N) in Liaoning province during a precipitation event caused by a cold vortex in Northeast China on August 12-13, 2020, we analyzed the characteristics of vertical structures of cloud and precipitation and discussed the precipitation mechanism. The results indicated that clouds develop unevenly in the horizontal direction during the precipitation, dominated by stratiform clouds and stratocumulus mixed clouds, and sometimes convective bubbles are embedded in the clouds. The cloud precipitation has changed significantly in stages, with stratiform cloud precipitation, stratocumulus mixed cloud precipitation, and convective cloud precipitation successively occurring. Both stratiform cloud precipitation and stratocumulus mixed cloud precipitation exhibit obvious bright bands, and the radar echo intensity, echo top height, and precipitation intensity of the stratiform mixed cloud precipitation are greater than that of the stratiform cloud precipitation. The radar echo of convective cloud precipitation attenuates obviously due to the heavy precipitation, thus the echo top height cannot indicate the actual cloud top situation. During the precipitation stage of stratiform clouds, the cloud radar reflectivity increases slowly as the altitude decreases, and the reflectivity decreases due to the combined effects of evaporation and collision of raindrops during their falling process. Compared with the precipitation in the stratiform cloud, the colliding effect of stratocumulus mixed cloud precipitation is stronger, and the evaporation under the cloud becomes weak due to the near-surface humidification effect of the previous precipitation. During the stage of convective cloud precipitation, the increase in reflectivity mainly occurs in the ice-water mixed layer, which favors generating large droplets, broadens the cloud drop spectrum, and improves the efficiency of collision.
Keywords:Northeast China cold vortex  Vertical structure of cloud and precipitation  Millimeter wavelength cloud radar  Micro rain radar  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《气象与环境学报》浏览原始摘要信息
点击此处可从《气象与环境学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号