首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MODELLING THE SENSITIVITY OF CHANNEL ADJUSTMENTS IN DESTABILIZED SAND-BED RIVERS
Authors:STEPHEN E DARBY  COLIN R THORNE
Abstract:Comprehensive empirical data of the response of unstable streams over a range of environmental conditions are unavailable. In this study, as a substitute for empirical data, a physically based numerical model of channel evolution is used in a range of numerical simulation experiments designed to predict the sensitivity of channel response to changes in control variables. The scope of the study is limited by the scope of the numerical model which applies to straight, sand-bed streams with cohesive bank materials that have been destabilized by sediment starvation and evolve towards equilibrium through bed degradation followed by channel widening. Results are presented for stable and unstable channel conditions. Stable channel depths are most sensitive to channel discharge, though the critical threshold shear stress for the entrainment of cohesive bank materials and discharge are both significant in determining the width. The sediment load, channel gradient, bank material cohesion, size of failed bank material aggregates and the initial bank height have sensitivities an order of magnitude smaller than discharge for both width and depth. Variations in bed material characteristics within the sand-size range are found to have little impact on simulated stable channel morphology. For unstable channels, the relative dominance of parameter sensitivities is examined in the context of an empirical-conceptual model of channel evolution proposed by Thorne and Osman (1988), to highlight the relationships between parameter dominance, time, and the processes and forms characterizing individual stages of channel evolution. Rates of change with time of width and depth sensitivity parameters for five tested independent variables (discharge, sediment supply, channel gradient, bank material cohesion and bed material size) are found to vary as a function of time, such that different stages of channel evolution are characterized by variations in the relative dominance of tested variables. The results support the hypothesis proposed by Thorne and Osman (1988) that the critical bank height required to initiate mass-wasting and widening may be regarded as a geomorphic threshold.
Keywords:river channel evolution  sensitivity  numerical modelling  environmental change  river adjustment  sand-bed  geomorphic thresholds  destabilized
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号