Abstract: | Sediment waves in river systems have been widely reported, although few studies have examined the interaction between these waves and the morphology of the reaches through which they pass. This interaction determines how waves are modified as they propagate downstream. This study documents the origin and downstream passage of an avulsion-generated sediment wave through a 374 m study reach of the Allt Dubhaig, Scotland. A nested survey framework was adopted, with volumes calculated from cross-sections spaced between 10 and 40 m apart documenting the origin and downstream passage of the wave. The wave moved through an intensively (c. 1 m cross-section spacing) monitored 120 m stretch (Reach A) within the study reach, allowing assessment of sediment exchanges between the incoming wave and the local morphology. Successive surveys show the movement of the wave through and out of the reach, and also that areas where wave sediment was deposited did not always correspond with areas of subsequent erosion. Reach A was divided into three morphologically distinct sub-reaches (1A, 2A and 3A) within which sediment fluxes and the three-dimensional distribution of erosion/deposition were estimated. Sediment wave input into 1A and 2A (relatively stable sub-reaches) caused forced bar aggradation and erosion of sediment from elsewhere within the reach, which then became part of the wave. The downstream transfer of this sediment into unstable 3A caused aggradation and, in response, widespread erosion which increased the magnitude of the sediment wave as it exited reach A. Sediment exchange between the recipient reach and the wave depends upon local morphological stability and is a crucial process affecting wave magnitude and attenuation. The macroscale sediment wave interacted with, rather than overwhelmed, the recipient morphology. © 1998 John Wiley & Sons, Ltd. |